Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Transparent coating repels water, could reduce corrosion


This image shows how a transparent coating causes water to bead up into drops and roll or bounce off a surface. This new technology will help protect and sustain Air Force systems by preventing corrosion and reducing ice formation on optical elements and aircraft. (Courtesy photo)
This image shows how a transparent coating causes water to bead up into drops and roll or bounce off a surface. This new technology will help protect and sustain Air Force systems by preventing corrosion and reducing ice formation on optical elements and aircraft. (Courtesy photo)

Abstract:
The development of a transparent coating that causes water to bead up into drops and roll or bounce off a surface will help protect and sustain Air Force systems by preventing corrosion and reducing ice formation on optical elements and aircraft.

Transparent coating repels water, could reduce corrosion

Arlington, VA | Posted on August 16th, 2008

An Air Force Office of Scientific Research-funded team, led by Dr. C.J. Brinker, has developed the transparent coating

In addition to keeping water away, the researchers also are using this technology to design a patterned surface that combines extremely water-repellent and water-absorbent areas to draw water out of humid air. This application -- modeled after the Namib Desert beetle -- could provide a new method for collecting water without the use of energy and could benefit troops in areas where water is scarce.

In order to produce and apply a coating with superhydrophobic, or extremely water-repellent, properties, the Brinker Nanostructures Research Group at the University of New Mexico and Sandia National Laboratories had to control coating roughness and surface chemistry on a small scale.

The team, already known for their breakthroughs in aerogel thin film processing, drew from that research to develop a simple method for depositing the coating on every contour of a surface by spraying, spinning or dipping.

Doctor Brinker explained that by a simple modification of a chemical precursor, the team reversed the shrinkage that typically occurs as a coating dries. Instead, it springs back, creating a nanoporous surface with super water-repellant properties.

"The most recent advancement in this research is the ability to selectively pattern the coating and spatially control the wetting behavior for a desired application," Doctor Brinker said. "This allows us to define the pathways along which water droplets will roll."

Their recent work has opened the door to new applications that exploit the way the coated surface interacts with liquid droplets. When water droplets roll along the coated surface, they pick up debris as they go. Doctor Brinker explained that this property might make the collection, concentration and identification of aerosol borne particles like anthrax possible.

The research is also likely to transition to commercial applications such as protection of electronics and antiquities from water damage.

####

For more information, please click here

Copyright © Air Force Office of Scientific Research

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

Particles from outer space are wreaking low-grade havoc on personal electronics February 19th, 2017

Liquid metal nano printing set to revolutionize electronics: Creating integrated circuits just atoms thick February 18th, 2017

Engineers shrink microscope to dime-sized device February 17th, 2017

Govt.-Legislation/Regulation/Funding/Policy

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

Engineers shrink microscope to dime-sized device February 17th, 2017

Francis Alexander Named Deputy Director of Brookhaven Lab's Computational Science Initiative February 16th, 2017

Good vibrations help reveal molecular details: Rice University scientists combine disciplines to pinpoint small structures in unlabeled molecules February 15th, 2017

Materials/Metamaterials

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

Metamaterial: Mail armor inspires physicists: KIT researchers reverse hall coefficient -- medieval mail armor inspired development of metamaterial with novel properties February 15th, 2017

Research reveals novel quantum state in strange insulating materials February 14th, 2017

Graphene foam gets big and tough: Rice University's nanotube-reinforced material can be shaped, is highly conductive February 13th, 2017

Military

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

Engineers shrink microscope to dime-sized device February 17th, 2017

Graphene foam gets big and tough: Rice University's nanotube-reinforced material can be shaped, is highly conductive February 13th, 2017

Meta-lenses bring benchtop performance to small, hand-held spectrometer: Game-changing nanostructure-based lenses allow smaller devices, increased functionality February 9th, 2017

Aerospace/Space

Particles from outer space are wreaking low-grade havoc on personal electronics February 19th, 2017

New method improves accuracy of imaging systems February 8th, 2017

National Space Society's Space Settlement Summit Draws Industry Leaders February 4th, 2017

Use stars’ own light to park tiny spacecraft at an exoplanet February 1st, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project