Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > News > Making carbon fullerenes with 100 percent efficiency

August 15th, 2008

Making carbon fullerenes with 100 percent efficiency

Abstract:
Carbon fullerenes—specifically C60, the spherical "bucky ball"—have received their fair share of attention, even in the shadow of the more buzz-worthy developments with carbon nanotubes and graphene. The bucky ball's spherical shape could allow it to contain molecules, while other chemical groups to can be attached to the surface, making biomedical applications a natural fit. Just like carbon nanotubes and graphene, however, bucky balls have proven difficult to synthesize reliably. Researchers have now discovered a method that produces the bucky ball configuration of carbon with nearly 100% conversion efficiency from precursor materials.

Current techniques for producing bucky balls are crude: graphite is vaporized and deposited, which may yield only fractions of a percentage of bucky ball fullerene. The vast majority of the carbon ends up in the nanotechnology carnival side-show as a spectacle of misshapen fullerenes, each presumably with unique and mysterious talents but present in scales not suited to reputable science. Not content with this injustice, scientists investigated catalyzing a decomposition reaction with the ever-useful (and insanely expensive) platinum.

Source:
arstechnica.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Springer and Tsinghua University Press present the second Nano Research Award: Paul Alivisatos of the University of California Berkeley receives the honor for outstanding contributions in nanoscience July 30th, 2015

European Technology Platform for Nanomedicine and ENATRANS European Consortium Launch the 2nd edition of the Nanomedicine Award: The Award to be presented at BIO-Europe conference in Munich, November 2015 July 30th, 2015

Take a trip through the brain July 30th, 2015

This could replace your silicon computer chips: A new semiconductor material made from black phosphorus may be a candidate to replace silicon in future tech July 30th, 2015

Discoveries

Take a trip through the brain July 30th, 2015

This could replace your silicon computer chips: A new semiconductor material made from black phosphorus may be a candidate to replace silicon in future tech July 30th, 2015

Sol-gel capacitor dielectric offers record-high energy storage July 30th, 2015

Controlling Dynamic Behavior of Carbon Nanosheets in Structures Made Possible July 30th, 2015

Materials/Metamaterials

Sol-gel capacitor dielectric offers record-high energy storage July 30th, 2015

Controlling Dynamic Behavior of Carbon Nanosheets in Structures Made Possible July 30th, 2015

Newly-Developed Polymers Control Size of Nanoparticles during Production Process July 30th, 2015

March 2016; 6th Int'l Conference on Nanostructures in Iran July 29th, 2015

Announcements

Take a trip through the brain July 30th, 2015

This could replace your silicon computer chips: A new semiconductor material made from black phosphorus may be a candidate to replace silicon in future tech July 30th, 2015

Sol-gel capacitor dielectric offers record-high energy storage July 30th, 2015

Controlling Dynamic Behavior of Carbon Nanosheets in Structures Made Possible July 30th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project