Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Self-assembling polymer arrays improve data storage potential

Abstract:
A new manufacturing approach holds the potential to overcome the technological limitations currently facing the microelectronics and data-storage industries, paving the way to smaller electronic devices and higher-capacity hard drives.

Self-assembling polymer arrays improve data storage potential

Madison, WI | Posted on August 15th, 2008

"In the past 20 to 30 years, researchers have been able to shrink the size of devices and the size of the patterns that you need to make those devices, following the use of the same types of lithographic materials, tools and strategies, only getting better and better at it," says Paul Nealey, director of the University of Wisconsin-Madison Nanoscale Science and Engineering Center (NSEC).

Now, those materials and tools are reaching their fundamental technical limits, hampering further performance gains. In addition, Nealey says, extrapolating lithography — a process used to pattern manufacturing templates — to smaller and smaller dimensions may become prohibitively expensive. Further advances will require a new approach that is both commercially viable and capable of meeting the demanding quality-control standards of the industry.

In a collaborative effort between academic and industry, chemical and biological engineering professors Nealey and Juan de Pablo and other colleagues from the UW-Madison NSEC partnered with researchers from Hitachi Global Storage Technologies to test a promising new twist on the traditional methods. In the Aug. 15 issue of the journal Science, the team demonstrates a patterning technology that may revolutionize the field, offering performance improvements over existing methods even while reducing the time and cost of manufacturing.

The method builds on existing approaches by combining the lithography techniques traditionally used to pattern microelectronics with novel self-assembling materials called block copolymers. When added to a lithographically patterned surface, the copolymers' long molecular chains spontaneously assemble into the designated arrangements.

"There's information encoded in the molecules that results in getting certain size and spacing of features with certain desirable properties," Nealey explains. "Thermodynamic driving forces make the structures more uniform in size and higher density than you can obtain with the traditional materials."

The block copolymers pattern the resulting array down to the molecular level, offering a precision unattainable by traditional lithography-based methods alone and even correcting irregularities in the underlying chemical pattern. Such nanoscale control also allows the researchers to create higher-resolution arrays capable of holding more information than those produced today.

In addition, the self-assembling block copolymers only need one-fourth as much patterning information as traditional materials to form the desired molecular architecture, making the process more efficient, Nealey says. "If you only have to pattern every fourth spot, you can write those patterns at a fraction of the time and expense," he says.

In addition to shared intellectual contributions, the collaboration between the UW-Madison and Hitachi teams provided very clear objectives about creating a technology that is industrially viable. "This research addresses one of the most significant challenges to delivering patterned media — the mass production of patterned disks in high volume, at a reasonable cost," says Richard New, director of research at Hitachi Global Storage Technologies. "The large potential gains in density offered by patterned media make it one of the most promising new technologies on the horizon for future hard disk drives."

In its current form, this method is very well-suited for designing hard drives and other data-storage devices, which need uniformly patterned templates — exactly the types of arrangements the block copolymers form most readily. With additional advances, the approach may also be useful for designing more complex patterns such as microchips.

"These results have profound implications for advancing the performance and capabilities of lithographic materials and processes beyond current limits," Nealey says.

In addition to support from the National Science Foundation, NSEC and Hitachi Global Storage Technologies, additional funding was provided by the Semiconductor Research Corp.

####

For more information, please click here

Copyright © University of Wisconsin-Madison

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Texas A&M Chemist Says Trapped Electrons To Blame For Lack Of Battery Efficiency: Forget mousetraps — today’s scientists will get the cheese if they manage to build a better battery June 28th, 2016

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

New, better way to build circuits for world's first useful quantum computers June 28th, 2016

Yale researchers’ technology turns wasted heat into power June 27th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

Particle zoo in a quantum computer: First experimental quantum simulation of particle physics phenomena June 23rd, 2016

Titan shines light on high-temperature superconductor pathway: Simulation demonstrates how superconductivity arises in cuprates' pseudogap phase June 22nd, 2016

Memory Technology

Ensuring the future affordability of wind turbines, computers and electric cars June 2nd, 2016

Automating DNA origami opens door to many new uses: Like 3-D printing did for larger objects, method makes it easy to build nanoparticles out of DNA May 30th, 2016

Hybrid nanoantennas -- next-generation platform for ultradense data recording April 28th, 2016

Magnetic vortices defy temperature fluctuations: Common magnetic mineral is reliable witness to Earth's history April 19th, 2016

Self Assembly

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

Self-assembling icosahedral protein designed: Self-assembling icosahedral protein designed June 22nd, 2016

DNA shaping up to be ideal framework for rationally designed nanostructures: Shaped DNA frames that precisely link nanoparticles into different structures offer a platform for designing functional nanomaterials June 14th, 2016

Automating DNA origami opens door to many new uses: Like 3-D printing did for larger objects, method makes it easy to build nanoparticles out of DNA May 30th, 2016

Discoveries

Texas A&M Chemist Says Trapped Electrons To Blame For Lack Of Battery Efficiency: Forget mousetraps — today’s scientists will get the cheese if they manage to build a better battery June 28th, 2016

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

New, better way to build circuits for world's first useful quantum computers June 28th, 2016

Yale researchers’ technology turns wasted heat into power June 27th, 2016

Announcements

Texas A&M Chemist Says Trapped Electrons To Blame For Lack Of Battery Efficiency: Forget mousetraps — today’s scientists will get the cheese if they manage to build a better battery June 28th, 2016

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

New, better way to build circuits for world's first useful quantum computers June 28th, 2016

Yale researchers’ technology turns wasted heat into power June 27th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic