Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Scientists overcome nanotech hurdle

A still image from a molecular dynamics simulation showing negatively (red) and positively (blue) charged areas of the nanoparticle. Part of the peptide is shown in the lower half of the frame and the reactive molecule attached in the middle.
A still image from a molecular dynamics simulation showing negatively (red) and positively (blue) charged areas of the nanoparticle. Part of the peptide is shown in the lower half of the frame and the reactive molecule attached in the middle.

Abstract:
When you make a new material on a nanoscale how can you see what you have made? A team lead by a Biotechnology and Biological Sciences research Council (BBSRC) fellow has made a significant step toward overcoming this major challenge faced by nanotechnology scientists. With new research published today (13 August) in ChemBioChem, the team from the University of Liverpool, The School of Pharmacy (University of London) and the University of Leeds, show that they have developed a technique to examine tiny protein molecules called peptides on the surface of a gold nanoparticle. This is the first time scientists have been able to build a detailed picture of self-assembled peptides on a nanoparticle and it offers the promise of new ways to design and manufacture novel materials on the tiniest scale - one of the key aims of nanoscience.

Scientists overcome nanotech hurdle

UK | Posted on August 14th, 2008

Engineering new materials through assembly of complex, but tiny, components is difficult for scientists. However, nature has become adept at engineering nanoscale building blocks, e.g. proteins and RNA. These are able to form dynamic and efficient nanomachines such as the cell's protein assembly machine (the ribosome) and minute motors used for swimming by bacteria. The BBSRC-funded team, led by Dr RaphaŰl LÚvy, has borrowed from nature, developing a way of constructing complex nanoscale building blocks through initiating self-assembly of peptides on the surface of a metal nanoparticle. Whilst this approach can provide a massive number and diversity of new materials relatively easily, the challenge is to be able to examine the structure of the material.

Using a chemistry-based approach and computer modelling, Dr LÚvy has been able to measure the distance between the peptides where they sit assembled on the gold nanoparticle. The technique exploits the ability to distinguish between two types of connection or 'cross-link' - one that joins different parts of the same molecule (intramolecular), and another that joins together two separate molecules (intermolecular). As two peptides get closer together there is a transition between the two different types of connection. Computer simulations allow the scientists to measure the distance at which this transition occurs, and therefore to apply it as a sort of molecular ruler. Information obtained through this combination of chemistry and computer molecular dynamics shows that the interactions between peptides leads to a nanoparticle that is relatively organized, but not uniform. This is the first time it has been possible to measure distances between peptides on a nanoparticle and the first time computer simulations have been used to model a single layer of self-assembled peptides.

Dr LÚvy said: "As nanotechnology scientists we face a challenge similar to the one faced by structural biologists half a century ago: determining the structure with atomic scale precision of a whole range of nanoscale materials. By using a combination of chemistry and computer simulation we have been able to demonstrate a method by which we can start to see what is going on at the nanoscale.

"If we can understand how peptides self-assemble at the surface of a nanoparticle, we can open up a route towards the design and synthesis of nanoparticles that have complex surfaces. These particles could find applications in the biomedical sciences, for example to deliver drugs to a particular target in the body, or to design sensitive diagnostic tests. In the longer term, these particles could also find applications in new generations of electronic components."

Professor Nigel Brown, BBSRC Director of Science and Technology, said: "Bionanotechnology holds great promise for the future. We may be able to create stronger, lighter and more durable materials, or new medical applications. Basic science and techniques for working at the nanoscale are providing the understanding that will permit future such applications of bionanotechnology."

####

About BBSRC
The Biotechnology and Biological Sciences Research Council (BBSRC) is the UK funding agency for research in the life sciences. Sponsored by Government, BBSRC annually invests around ú420 million in a wide range of research that makes a significant contribution to the quality of life for UK citizens and supports a number of important industrial stakeholders including the agriculture, food, chemical, healthcare and pharmaceutical sectors.

For more information, please click here

Contacts:
Matt Goode, Head of Media

tel: 01793 413299
fax: 01793 413382

Nancy Mendoza, Media Officer

tel: 01793 413355
fax: 01793 413382

Copyright © BBSRC

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Transparent, electrically conductive network of encapsulated silver nanowires: A novel electrode for optoelectronics August 1st, 2015

Harris & Harris Group Portfolio Company, HZO, Announces Partnerships with Dell and Motorola August 1st, 2015

Advances and Applications in Biosensing, Sensor Power, and Sensor R&D to be Covered at Sensors Global Summit August 1st, 2015

Kalam: versatility personified August 1st, 2015

Imaging

Take a trip through the brain July 30th, 2015

Publication on Atomic Force Microscopy based nanoscale IR Spectroscopy (AFM-IR) persists as a 2015 top downloaded paper July 29th, 2015

Short wavelength plasmons observed in nanotubes: Berkeley Lab researchers create Ludinger liquid plasmons in metallic SWNTs July 28th, 2015

Reshaping the solar spectrum to turn light to electricity: UC Riverside researchers find a way to use the infrared region of the sun's spectrum to make solar cells more efficient July 27th, 2015

Videos/Movies

Take a trip through the brain July 30th, 2015

Self Assembly

Self-assembling, biomimetic membranes may aid water filtration August 1st, 2015

New computer model could explain how simple molecules took first step toward life: Two Brookhaven researchers developed theoretical model to explain the origins of self-replicating molecules July 28th, 2015

Spintronics: Molecules stabilizing magnetism: Organic molecules fixing the magnetic orientation of a cobalt surface/ building block for a compact and low-cost storage technology/ publication in Nature Materials July 25th, 2015

Imec introduces self-assembled monomolecular organic films to seal ultra-porous low- k materials: Method prevents leakage of barrier precursors during the interconnect metallization scheme July 15th, 2015

Discoveries

Gold-diamond nanodevice for hyperlocalised cancer therapy: Gold nanorods can be used as remote controlled nanoheaters delivering the right amount of thermal treatment to cancer cells, thanks to diamond nanocrystals used as temperature sensors August 1st, 2015

Shaping the hilly landscapes of a semi-conductor nanoworld August 1st, 2015

Solid state physics: Quantum matter stuck in unrest August 1st, 2015

Self-assembling, biomimetic membranes may aid water filtration August 1st, 2015

Announcements

Self-assembling, biomimetic membranes may aid water filtration August 1st, 2015

Transparent, electrically conductive network of encapsulated silver nanowires: A novel electrode for optoelectronics August 1st, 2015

Harris & Harris Group Portfolio Company, HZO, Announces Partnerships with Dell and Motorola August 1st, 2015

Advances and Applications in Biosensing, Sensor Power, and Sensor R&D to be Covered at Sensors Global Summit August 1st, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project