Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Applied Materials Advances Semiconductor Research at UC Berkeley With Significant Equipment Donation

Abstract:
Applied Materials (Nasdaq:AMAT) is advancing semiconductor research with an equipment and service donation to the University of California, Berkeley's Nanofabrication Laboratory in the Center for Information Technology Research in the Interest of Society (CITRIS). CITRIS is a center of excellence for graduate students, faculty and industrial researchers to create nanotechnology solutions for many of the world's most pressing social, environmental and health care issues.

Applied Materials Advances Semiconductor Research at UC Berkeley With Significant Equipment Donation

SANTA CLARA, CA | Posted on August 11th, 2008

"In order to accelerate breakthrough technologies, we believe it is important for students to work on advanced equipment and gain hands-on experience working on semiconductor devices," said Om Nalamasu, Deputy CTO and Vice President of Advanced Technologies at Applied Materials. "We are pleased to be part of CITRIS and look forward to working together with students and faculty, and to a stronger affiliation with the University."

Applied Materials' gift consists of processing equipment and a service contract valued in excess of $5 million. The systems complement Applied Materials equipment that was donated to the university in 2002.

"These advanced systems will be used by our engineering students to accelerate groundbreaking research in semiconductor and related nanofabrication technology that may fuel an array of new discoveries," said Shankar Sastry, Dean of the College of Engineering. "We thank Applied Materials for its continued support as these tools will be valuable to the University's programs."

CITRIS will foster work on novel semiconductor devices and their integration with nanowires/nanotubes, microelectomechanical systems (MEMS), optoelectronics, and bioelectronics. The systems donated by Applied will be used to deposit two of the most critical thin films that are part of next-generation integrated circuits: epitaxy and gate dielectrics.

In addition, as a result of Applied Materials' investment and continued support, UC Berkeley will dedicate a collaborative laboratory within CITRIS, known as a "Collaboratory," to Applied Materials and it will be devoted to energy research. The Collaboratory is a key feature of CITRIS, providing faculty, students and industrial researchers with spaces for project-driven collaboration. The capability of The Collaboratory combines well with Applied Materials' solar strategy to bring significant change to the industry by developing new technologies that enable lower cost-per-watt solutions for solar cell manufacturing with the goal of making solar power a significant alternative source of global energy.

####

About Applied Materials
Applied Materials Inc. (Nasdaq:AMAT) is the global leader in Nanomanufacturing Technology solutions with a broad portfolio of innovative equipment, service and software products for the fabrication of semiconductor chips, flat panel displays, solar photovoltaic cells, flexible electronics and energy efficient glass. At Applied Materials, we apply nanomanufacturing technology to improve the way people live.

For more information, please click here

Contacts:
Applied Materials Inc.
David Miller
408-563-9582 (Editorial/Media)

Robert Friess
408-986-7977 (Financial Community)

Copyright © Business Wire 2008

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Application of air-sensitive semiconductors in nanoelectronics: 2-D semiconductor gallium selenide in encapsulated nanoelectronic devices September 22nd, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

DNA triggers shape-shifting in hydrogels, opening a new way to make 'soft robots' September 21st, 2017

Physicists develop new recipes for design of fast single-photon gun Physicists develop high-speed single-photon sources for quantum computers of the future September 21st, 2017

Academic/Education

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Graduate Students from Across the Country Attend Hands-on NanoCamp: Prominent scientists Warren Oliver, Ph.D., and George Pharr, Ph.D., presented a weeklong NanoCamp for hand-picked graduate students across the United States July 26th, 2017

The Physics Department of Imperial College, London, uses the Quorum Q150T to deposit metals and ITO to make plasmonic sensors and electric contact pads July 13th, 2017

Announcements

Application of air-sensitive semiconductors in nanoelectronics: 2-D semiconductor gallium selenide in encapsulated nanoelectronic devices September 22nd, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

DNA triggers shape-shifting in hydrogels, opening a new way to make 'soft robots' September 21st, 2017

Physicists develop new recipes for design of fast single-photon gun Physicists develop high-speed single-photon sources for quantum computers of the future September 21st, 2017

Tools

Graphene based terahertz absorbers: Printable graphene inks enable ultrafast lasers in the terahertz range September 13th, 2017

Chemical hot spots: Scanning tunneling microscopy measurements identify active sites on catalyst surfaces September 7th, 2017

Phenom-World selects Deben to supply a tensile stage as an accessory to their range of desktop SEMs August 29th, 2017

New results reveal high tunability of 2-D material: Berkeley Lab-led team also provides most precise band gap measurement yet for hotly studied monolayer moly sulfide August 26th, 2017

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Magnetic cellular 'Legos' for the regenerative medicine of the future September 12th, 2017

Quantum detectives in the hunt for the world's first quantum computer September 8th, 2017

New results reveal high tunability of 2-D material: Berkeley Lab-led team also provides most precise band gap measurement yet for hotly studied monolayer moly sulfide August 26th, 2017

A more complete picture of the nano world August 24th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project