Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > The Shape of Things to Come

Low magnification scanning electron micrograph of a collection of silicon photodetector pixels and electronics interconnected by arc-shaped ribbons, on a hemispherical substrate. These interconnects bow upward to accommodate the large mechanical strains needed to transform the planar layouts in which the systems are initially fabricated to the hemispherical geometries needed for implementation in the electronic eye. The image is colorized: pixel elements and interconnects appear gold; the substrate appears light blue.

Credit: Beckman Institute, University of Illinois
Low magnification scanning electron micrograph of a collection of silicon photodetector pixels and electronics interconnected by arc-shaped ribbons, on a hemispherical substrate. These interconnects bow upward to accommodate the large mechanical strains needed to transform the planar layouts in which the systems are initially fabricated to the hemispherical geometries needed for implementation in the electronic eye. The image is colorized: pixel elements and interconnects appear gold; the substrate appears light blue.

Credit: Beckman Institute, University of Illinois

Abstract:
Flexible web of micro-sensors enables eye-shaped camera, heralds new class of electronics technology that can conform to almost any shape

The Shape of Things to Come

Arlington, VA | Posted on August 6th, 2008

Instead of using a flat microchip as the light sensor for their new camera, a team of engineers has developed a sensor that is a flexible mesh of wire-connected pixels.

The mesh is made from many of the same materials as a standard digital-camera sensor, but has the unique ability to conform to convoluted, irregular surfaces.

The technology is already showing promise for photography, as the researchers conformed the array to a hemispherical shape and incorporated the device into a working eye-like camera. The new system eliminates some of the aberrations caused by current camera designs and improves the quality of captured images.

Researchers are testing the same design principles in a range of other applications, including as a thin, conformable monitor to detect electrical signals traveling across the undulating surface of the human brain.

Led by John Rogers of the University of Illinois at Urbana-Champaign and Yonggang Huang of Northwestern University in Evanston, Ill., the researchers announced their findings Aug. 7, 2008, in the journal Nature.

"This research is truly transformative," said Ken Chong, advisor in the National Science Foundation (NSF) Engineering Directorate, who is one of the officers overseeing the researchers' NSF grant. "Using simple mechanics principles, the researchers have produced, for the first time, electronic devices on a hemispherical surface so that they can take images much like those captured by the human eye."

The technology breakthrough is a novel approach that bypasses a traditional planar sensor of adjacent pixels and instead relies upon an array of pixels interconnected by small wires. Using a flexible, temporary backing, the researchers can form the array into a curved shape and then transfer the array to its permanent location affixed to a glass lens.

Over the last 20 years, many researchers have tried to manufacture such electronic eye systems, but until now, none were able to create a working camera.

"This strategy opens up exciting, new engineering design possibilities by eliminating the two dimensional, planar constraints of conventional, semiconductor wafer-based optoelectronics," said John Rogers, Flory-Founder Chair Professor of Materials Science and Engineering at University of Illinois at Urbana/Champaign.

While a flat, planar sensor cannot flex without damaging its light-sensitive pixels, the new technology puts the strain on the wires, each flexing as much as 40 percent. Since the wires absorb the strain, the pixels are barely stressed, even when affixed to the retina-shaped housing of the new experimental camera.

Conventional digital cameras use planar chips based on rigid, brittle semiconductor wafer substrates that fracture at strains of less than 1 percent.

"Mechanics helps to reduce the stresses and strain in components, and guide and optimize the system design," said Yonggang Huang, Joseph Cummings Professor of Civil and Environmental Engineering and Mechanical Engineering, Northwestern University, who worked with his team to model the mechanical properties of the design so that it could be manufactured.

The current sensor array includes only 256 pixels, but because the technology is based on established materials and manufacturing processes, the researchers ultimately expect more sophisticated sensors in higher density arrays. The same approaches can be used for nearly any class of semiconductor electronic device for a range of functions such as sensing, actuating and computing.

"We believe that some of the most compelling areas of future application involve the intimate, conformal integration of electronics with the human body, in ways that are inconceivable using established technologies," said Rogers, who is also affiliated with the Beckman Institute for Advanced Science and Technology and the Frederick Seitz Materials Research Laboratory. "We are working actively with collaborators to explore possibilities in advanced health monitors, prosthetic devices and therapeutic systems.

The electronic eye research emerged in part from the collaborative activities of the Center for Nano-Chemical-Electrical-Mechanical Manufacturing Systems (Nano-CEMMS).

####

About National Science Foundation
The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering, with an annual budget of $6.06 billion. NSF funds reach all 50 states through grants to over 1,900 universities and institutions. Each year, NSF receives about 45,000 competitive requests for funding, and makes over 11,500 new funding awards. NSF also awards over $400 million in professional and service contracts yearly.

For more information, please click here

Contacts:
Media Contacts
Joshua A. Chamot
NSF
(703) 292-7730


Megan Fellman
Northwestern University
(847) 491-3115


Kyle Delaney
Northwestern University
(847) 467-4010


James Kloeppel
University of Illinois at Urbana-Champaign
(217) 244-1073


Program Contacts
Ken P. Chong
NSF
(703) 292-7008


Principal Investigators
John Rogers
University of Illinois at Urbana-Champaign
(217) 244-4979


Co-Investigators
Yonggang Huang
Northwestern University
(847) 467-3165


Copyright © National Science Foundation

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Atomic force imaging used to study nematodes: KFU bionanotechnology lab (head - Dr. Rawil Fakhrullin) has obtained 3-D images of nematodes' cuticles February 23rd, 2017

Particle Works creates range of high performance quantum dots February 23rd, 2017

EmTech Asia breaks new barriers with potential applications of space exploration with NASA and MIT February 22nd, 2017

JPK selects compact tensile stage from Deben for their NanoWizardŽ AFM platform to broaden capabilities for materials characterisation February 22nd, 2017

Govt.-Legislation/Regulation/Funding/Policy

Atomic force imaging used to study nematodes: KFU bionanotechnology lab (head - Dr. Rawil Fakhrullin) has obtained 3-D images of nematodes' cuticles February 23rd, 2017

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

Engineers shrink microscope to dime-sized device February 17th, 2017

Sensors

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

Liquid metal nano printing set to revolutionize electronics: Creating integrated circuits just atoms thick February 18th, 2017

Research opens door to smaller, cheaper, more agile communications tech February 16th, 2017

Metamaterial: Mail armor inspires physicists: KIT researchers reverse hall coefficient -- medieval mail armor inspired development of metamaterial with novel properties February 15th, 2017

Discoveries

Atomic force imaging used to study nematodes: KFU bionanotechnology lab (head - Dr. Rawil Fakhrullin) has obtained 3-D images of nematodes' cuticles February 23rd, 2017

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

Tiny nanoclusters could solve big problems for lithium-ion batteries February 21st, 2017

Breakthrough with a chain of gold atoms: In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport February 20th, 2017

Announcements

Atomic force imaging used to study nematodes: KFU bionanotechnology lab (head - Dr. Rawil Fakhrullin) has obtained 3-D images of nematodes' cuticles February 23rd, 2017

Particle Works creates range of high performance quantum dots February 23rd, 2017

GLOBALFOUNDRIES Announces Availability of 45nm RF SOI to Advance 5G Mobile Communications: Optimized RF features deliver high-performance solutions for mmWave beam forming applications in 5G smartphones and base stations February 22nd, 2017

EmTech Asia breaks new barriers with potential applications of space exploration with NASA and MIT February 22nd, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project