Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > BioNanomatrix Awarded New NIH Grant for Development of Nanoscale Platform for Single-Molecule DNA Mapping and Haplotype Applications

Abstract:
BioNanomatrix, Inc., a developer of breakthrough nanoscale whole genome imaging platforms for genetic diagnostics, personalized medicine and biomedical research, today announced receipt of a grant from the National Human Genome Research Institute of the U.S. National Institutes of Health (NIH). Under the direction of BioNanomatrix principal investigator Dr. Ming Xiao, the two-year $399,020 project will develop a nanoscale platform for single-molecule haplotyping imaging and analysis of long strands of DNA at ultra-high resolution in a massively parallel format.

BioNanomatrix Awarded New NIH Grant for Development of Nanoscale Platform for Single-Molecule DNA Mapping and Haplotype Applications

PHILADELPHIA, PA | Posted on August 6th, 2008

"We are pleased that the NIH has again recognized the potential of our revolutionary nanoscale single-molecule imaging and analysis technology by awarding us this new grant, which is explicitly intended to support the development of a platform to produce consistent linearization and imaging of individual DNA molecules, allowing for high resolution mapping of labeled genomic sites," said Han Cao, Ph.D., chief scientific officer of BioNanomatrix. "This added support will help us accelerate the development of the platform, which we believe could add significantly to the understanding of genetic diseases by increasing access to whole genome analysis and by allowing researchers to view and analyze the critical haplotype information that is currently difficult to obtain."

The goal of the project is to develop a fully integrated nanochannel chip and reader capable of single-molecule mapping of linearized genomic material extracted directly from a sample, enabling direct visualization and analysis of long strands of DNA in context and at very high resolution. The platform is designed to accommodate massively parallel analyses of individual DNA molecules to permit standardized, high-throughput mapping of sequence motifs or polymorphic sites along the DNA. Such capabilities could transform biological analyses, permitting highly sensitive detection of genetic information for genome-wide association studies, especially where crucial haplotype information is required. These capabilities would result in a greater understanding of genetic variation and genetic diseases and also enable applications such as rapid mapping of pathogen genomes.

BioNanomatrix has previously been awarded grants to accelerate the development of its single-molecule whole genome imaging platform, to use its nanoscale platform to identify and quantify damage caused to DNA by ionizing radiation and to develop chip-based nanofluidics systems for cell fractionation for applications in cancer diagnostics and research. The company is also the co-recipient of a five-year grant from the U.S. National Institute of Standards and Technology Advanced Technology Program to co-develop a platform enabling sequencing of the human genome at a cost of $100.

####

About BioNanomatrix, Inc.
BioNanomatrix is developing breakthrough nanoscale whole genome imaging and analytic platforms for applications in genetic diagnostics, personalized medicine and biomedical research applications. The company is applying its expertise in nanochips, nanodevices and nanosystems to develop its patented platform technology to provide fast, comprehensive, and low-cost analysis of genomic, epigenomic and proteomic information with sensitivity at the single-molecule level. Its current development efforts include a federally funded project to sequence the human genome at a cost of $100. BioNanomatrix's technologies are licensed exclusively from Princeton University. Founded in 2003, the company is headquartered in Philadelphia, Pennsylvania.

For more information, please click here

Contacts:
Barbara Lindheim
GendeLLindheim BioCom Partners
212 918-4650

Copyright © PR Newswire Association LLC.

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Sandia use confined nanoparticles to improve hydrogen storage materials performance: Big changes from a small package for hydrogen storage February 25th, 2017

New nano approach could cut dose of leading HIV treatment in half February 24th, 2017

Atom-scale oxidation mechanism of nanoparticles helps develop anti-corrosion materials February 24th, 2017

Atomic force imaging used to study nematodes: KFU bionanotechnology lab (head - Dr. Rawil Fakhrullin) has obtained 3-D images of nematodes' cuticles February 23rd, 2017

Govt.-Legislation/Regulation/Funding/Policy

Sandia use confined nanoparticles to improve hydrogen storage materials performance: Big changes from a small package for hydrogen storage February 25th, 2017

Atom-scale oxidation mechanism of nanoparticles helps develop anti-corrosion materials February 24th, 2017

Atomic force imaging used to study nematodes: KFU bionanotechnology lab (head - Dr. Rawil Fakhrullin) has obtained 3-D images of nematodes' cuticles February 23rd, 2017

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

Nanomedicine

New nano approach could cut dose of leading HIV treatment in half February 24th, 2017

Atomic force imaging used to study nematodes: KFU bionanotechnology lab (head - Dr. Rawil Fakhrullin) has obtained 3-D images of nematodes' cuticles February 23rd, 2017

Nominations Invited for $250,000 Kabiller Prize in Nanoscience: Major international prize recognizes a visionary nanotechnology researcher February 20th, 2017

Good vibrations help reveal molecular details: Rice University scientists combine disciplines to pinpoint small structures in unlabeled molecules February 15th, 2017

Announcements

Sandia use confined nanoparticles to improve hydrogen storage materials performance: Big changes from a small package for hydrogen storage February 25th, 2017

New nano approach could cut dose of leading HIV treatment in half February 24th, 2017

Atom-scale oxidation mechanism of nanoparticles helps develop anti-corrosion materials February 24th, 2017

Atomic force imaging used to study nematodes: KFU bionanotechnology lab (head - Dr. Rawil Fakhrullin) has obtained 3-D images of nematodes' cuticles February 23rd, 2017

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Sandia use confined nanoparticles to improve hydrogen storage materials performance: Big changes from a small package for hydrogen storage February 25th, 2017

Oxford Instruments announces Dr Brad Ramshaw of Cornell University, as winner of the 2017 Lee Osheroff Richardson Science Prize February 20th, 2017

Nominations Invited for $250,000 Kabiller Prize in Nanoscience: Major international prize recognizes a visionary nanotechnology researcher February 20th, 2017

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project