Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > BioNanomatrix Awarded New NIH Grant for Development of Nanoscale Platform for Single-Molecule DNA Mapping and Haplotype Applications

Abstract:
BioNanomatrix, Inc., a developer of breakthrough nanoscale whole genome imaging platforms for genetic diagnostics, personalized medicine and biomedical research, today announced receipt of a grant from the National Human Genome Research Institute of the U.S. National Institutes of Health (NIH). Under the direction of BioNanomatrix principal investigator Dr. Ming Xiao, the two-year $399,020 project will develop a nanoscale platform for single-molecule haplotyping imaging and analysis of long strands of DNA at ultra-high resolution in a massively parallel format.

BioNanomatrix Awarded New NIH Grant for Development of Nanoscale Platform for Single-Molecule DNA Mapping and Haplotype Applications

PHILADELPHIA, PA | Posted on August 6th, 2008

"We are pleased that the NIH has again recognized the potential of our revolutionary nanoscale single-molecule imaging and analysis technology by awarding us this new grant, which is explicitly intended to support the development of a platform to produce consistent linearization and imaging of individual DNA molecules, allowing for high resolution mapping of labeled genomic sites," said Han Cao, Ph.D., chief scientific officer of BioNanomatrix. "This added support will help us accelerate the development of the platform, which we believe could add significantly to the understanding of genetic diseases by increasing access to whole genome analysis and by allowing researchers to view and analyze the critical haplotype information that is currently difficult to obtain."

The goal of the project is to develop a fully integrated nanochannel chip and reader capable of single-molecule mapping of linearized genomic material extracted directly from a sample, enabling direct visualization and analysis of long strands of DNA in context and at very high resolution. The platform is designed to accommodate massively parallel analyses of individual DNA molecules to permit standardized, high-throughput mapping of sequence motifs or polymorphic sites along the DNA. Such capabilities could transform biological analyses, permitting highly sensitive detection of genetic information for genome-wide association studies, especially where crucial haplotype information is required. These capabilities would result in a greater understanding of genetic variation and genetic diseases and also enable applications such as rapid mapping of pathogen genomes.

BioNanomatrix has previously been awarded grants to accelerate the development of its single-molecule whole genome imaging platform, to use its nanoscale platform to identify and quantify damage caused to DNA by ionizing radiation and to develop chip-based nanofluidics systems for cell fractionation for applications in cancer diagnostics and research. The company is also the co-recipient of a five-year grant from the U.S. National Institute of Standards and Technology Advanced Technology Program to co-develop a platform enabling sequencing of the human genome at a cost of $100.

####

About BioNanomatrix, Inc.
BioNanomatrix is developing breakthrough nanoscale whole genome imaging and analytic platforms for applications in genetic diagnostics, personalized medicine and biomedical research applications. The company is applying its expertise in nanochips, nanodevices and nanosystems to develop its patented platform technology to provide fast, comprehensive, and low-cost analysis of genomic, epigenomic and proteomic information with sensitivity at the single-molecule level. Its current development efforts include a federally funded project to sequence the human genome at a cost of $100. BioNanomatrix's technologies are licensed exclusively from Princeton University. Founded in 2003, the company is headquartered in Philadelphia, Pennsylvania.

For more information, please click here

Contacts:
Barbara Lindheim
GendeLLindheim BioCom Partners
212 918-4650

Copyright © PR Newswire Association LLC.

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Biology’s hardest working pigments and ‘MOFs’ might just save the climate: A range of processes that currently depend on fossil fuels but are really hard to electrify will depend on the development of genuinely clean fuels, and for that to happen, much more efficient catalysts wi July 22nd, 2022

Generating power where seawater and river water meet July 22nd, 2022

First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022

At the water’s edge: Self-assembling 2D materials at a liquid–liquid interface: Scientists find a simple way to produce heterolayer coordination nanosheets, expanding the diversity of 2D materials July 22nd, 2022

Govt.-Legislation/Regulation/Funding/Policy

UNC Charlotte-led team invents new anticoagulant platform, offering hope for advances for heart surgery, dialysis, other procedures July 15th, 2022

Strain-sensing smart skin ready to deploy: Nanotube-embedded coating detects threats from wear and tear in large structures July 15th, 2022

Rensselaer researchers learn to control electron spin at room temperature to make devices more efficient and faster: Electron spin, rather than charge, holds the key July 15th, 2022

Crystal phase engineering offers glimpse of future potential, researchers say July 15th, 2022

Nanomedicine

How different cancer cells respond to drug-delivering nanoparticles: The findings of a large-scale screen could help researchers design nanoparticles that target specific types of cancer July 22nd, 2022

Biology’s hardest working pigments and ‘MOFs’ might just save the climate: A range of processes that currently depend on fossil fuels but are really hard to electrify will depend on the development of genuinely clean fuels, and for that to happen, much more efficient catalysts wi July 22nd, 2022

Study reveals new mode of triggering immune responses July 15th, 2022

UNC Charlotte-led team invents new anticoagulant platform, offering hope for advances for heart surgery, dialysis, other procedures July 15th, 2022

Announcements

Quantum computer works with more than zero and one: Quantum digits unlock more computational power with fewer quantum particles July 22nd, 2022

Biology’s hardest working pigments and ‘MOFs’ might just save the climate: A range of processes that currently depend on fossil fuels but are really hard to electrify will depend on the development of genuinely clean fuels, and for that to happen, much more efficient catalysts wi July 22nd, 2022

Generating power where seawater and river water meet July 22nd, 2022

First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

UNC Charlotte-led team invents new anticoagulant platform, offering hope for advances for heart surgery, dialysis, other procedures July 15th, 2022

Photoinduced large polaron transport and dynamics in organic-inorganic hybrid lead halide perovskite with terahertz probes July 8th, 2022

Luisier wins SNSF Advanced Grant to develop simulation tools for nanoscale devices July 8th, 2022

Solving the solar energy storage problem with rechargeable batteries that can convert and store energy at once June 24th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project