Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > New Technique Reveals Hidden Properties of Ultracold Atomic Gases

A powerful new JILA technique reveals hidden properties of ultracold atoms in a superfluid, in which atoms form pairs like electrons in a superconductor. The JILA group focuses on the "crossover" stage (middle graphic) between the small pairs of a Bose-Einstein Condensate (left) and the extremely large pairs of a low-temperature superconductor (right).

Credit: C. Regal/JILA
A powerful new JILA technique reveals hidden properties of ultracold atoms in a superfluid, in which atoms form pairs like electrons in a superconductor. The JILA group focuses on the "crossover" stage (middle graphic) between the small pairs of a Bose-Einstein Condensate (left) and the extremely large pairs of a low-temperature superconductor (right).

Credit: C. Regal/JILA

Abstract:
Physicists at JILA, a joint institute of the National Institute of Standards and Technology (NIST) and the University of Colorado at Boulder, have demonstrated a powerful new technique that reveals hidden properties of ultracold atomic gases.

New Technique Reveals Hidden Properties of Ultracold Atomic Gases

GAITHERSBURG, MD | Posted on August 6th, 2008

To develop the new technique, the scientists borrowed an idea used for nearly a century in the study of materials: photoemission spectroscopy. Traditional photoemission spectroscopy probes the energy of electrons in a material. The new photoemission spectroscopy technique, described in the Aug. 7 issue of Nature,* adapts this technique to study potassium atoms in an ultracold gas.

Photoemission spectroscopy is particularly powerful in revealing details of the pairing of electrons in high-temperature superconductors, which are solids that have zero resistance to electrical current at relatively high temperatures (but still below room temperature). The scientists at JILA study a very similar phenomenon: superfluidity (fluids that can flow with zero friction). Specifically, they study how atoms in a Fermi gas behave as they "cross over" from acting like a Bose Einstein Condensate (in which fermions pair up to form tightly bound molecules) to behaving like pairs of separated electrons in a superconductor.

In the crossover region, atoms in an ultracold gas exert very strong forces on each other, which masks their individual properties. To see the hidden behavior, JILA scientists apply a radio frequency field to a cloud of trapped, paired potassium atoms, ejecting a few atoms from the strongly interacting cloud. Then the laser trap is turned off so the gas can expand. Scientists make images and count the numbers of escaping atoms at different velocities. With this information, scientists can calculate the atoms' original energy states and momentum values back when they were inside the gas. Scientists then map the energy levels for all the original states of the atoms and can identify a particular pattern that shows the appearance of a large "energy gap," which represents the amount of energy needed to break apart a pair of atoms.

The new photoemission technique represents a huge jump in the information available to physicists who study ultracold gases. Traditionally, scientists could probe either the energy or momentum of these gases, not both. The new technique simultaneously probes the energy and momentum, allowing the scientists to study the microscopics involved in the pairing of two atoms.

"This technique is a clean probe of the microscopics in this system, and it allows us to see interesting things like a very large energy gap that seems to appear before the superfluid state," says group leader Deborah Jin, a JILA/NIST fellow. Another research group previously identified what seemed to be an energy gap; however, the results of the JILA technique are much clearer to interpret, Jin says.

Ultimately, the JILA work studying superfluidity in atomic gases may one day help in understanding the energy gap that appears in high-temperature superconductors, which may have applications such as more efficient transmission of electricity across power grids. In addition, the new technique can be extended beyond the study of pairing to include, for example, the study of atoms trapped in crisscrossed "lattices" of laser light, a building block for some atomic clock and quantum computer designs.

Funding for the research was provided by the National Science Foundation.

*J.T. Stewart, J.P. Gaebler and D.S. Jin. Using photoemission spectroscopy to probe a strongly interacting Fermi gas. Nature. Aug. 7, 2008.

####

About NIST
Founded in 1901, NIST is a non-regulatory federal agency within the U.S. Department of Commerce. NIST's mission is to promote U.S. innovation and industrial competitiveness by advancing measurement science, standards, and technology in ways that enhance economic security and improve our quality of life.

For more information, please click here

Contacts:
Laura Ost

(303) 497-4880

Copyright © NIST

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanotechnology identifies brain tumor types through MRI 'virtual biopsy' in animal studies: If results are confirmed in humans, tumor cells could someday be diagnosed by MRI imaging and treated with tumor-specific IV injections; new NIH grant will fund future study May 27th, 2015

Who needs water to assemble DNA? Non-aqueous solvent supports DNA nanotechnology May 27th, 2015

Controlled Release of Anticorrosive Materials in Spot by Nanocarriers May 27th, 2015

Production of Copper Cobaltite Nanocomposites with Photocatalytic Properties in Iran May 27th, 2015

Physics

Researchers find the 'key' to quantum network solution May 25th, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Defects can 'Hulk-up' materials: Berkeley lab study shows properly managed damage can boost material thermoelectric performances May 20th, 2015

Quantum physics on tap - Nano-sized faucet offers experimental support for longstanding quantum theory May 16th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Nanotechnology identifies brain tumor types through MRI 'virtual biopsy' in animal studies: If results are confirmed in humans, tumor cells could someday be diagnosed by MRI imaging and treated with tumor-specific IV injections; new NIH grant will fund future study May 27th, 2015

Who needs water to assemble DNA? Non-aqueous solvent supports DNA nanotechnology May 27th, 2015

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Discoveries

Nanotechnology identifies brain tumor types through MRI 'virtual biopsy' in animal studies: If results are confirmed in humans, tumor cells could someday be diagnosed by MRI imaging and treated with tumor-specific IV injections; new NIH grant will fund future study May 27th, 2015

Who needs water to assemble DNA? Non-aqueous solvent supports DNA nanotechnology May 27th, 2015

Production of Copper Cobaltite Nanocomposites with Photocatalytic Properties in Iran May 27th, 2015

Fine-tuned molecular orientation is key to more efficient solar cells May 26th, 2015

Announcements

Nanotechnology identifies brain tumor types through MRI 'virtual biopsy' in animal studies: If results are confirmed in humans, tumor cells could someday be diagnosed by MRI imaging and treated with tumor-specific IV injections; new NIH grant will fund future study May 27th, 2015

Who needs water to assemble DNA? Non-aqueous solvent supports DNA nanotechnology May 27th, 2015

Controlled Release of Anticorrosive Materials in Spot by Nanocarriers May 27th, 2015

Production of Copper Cobaltite Nanocomposites with Photocatalytic Properties in Iran May 27th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project