Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Nanotech Fuel Cell Research May Clear Hydrogen Hurdles

    This nano-scale honeycomb structure enables more efficient chemical reactions in a new generation of fuel cells. (click for high-res version) 

    (Photo: Yannick C. Kimmel, an undergraduate student in the School of Engineering and Applied Science who is working on this research)
This nano-scale honeycomb structure enables more efficient chemical reactions in a new generation of fuel cells. (click for high-res version)

(Photo: Yannick C. Kimmel, an undergraduate student in the School of Engineering and Applied Science who is working on this research)

Abstract:
Fuel cells are one of the most touted new energy technologies. They directly convert the chemical energy of fuels into electrical energy, doing so roughly twice as efficiently as a diesel engine.

The biggest stumbling block preventing the widespread adoption of fuel cell technology has been a reliance on hydrogen as the "fuel." Not only is hydrogen both difficult and dangerous to store and distribute, but 96 percent of hydrogen comes from oil and gas. Fuel cells that rely on hydrogen do little to reduce fossil fuel use.

New research from a University of Virginia team, recently funded by a new U.Va. Collaborative Sustainable Energy Seed Grant worth about $30,000, is taking two approaches to removing the need for hydrogen.

Nanotech Fuel Cell Research May Clear Hydrogen Hurdles

Charlottesville, VA | Posted on August 5th, 2008

The twin projects will both use similar nano-scale engineering in very different applications, explained team member Steve McIntosh, an assistant professor of chemical engineering. One half of the project will apply new nano-scale structures to try and create a new type of "solar cell" that will gather the energy of sunlight to electrochemically split water into its molecular components of oxygen and hydrogen, which could potentially provide a practically limitless, renewable source of hydrogen.

The other half of the research will use similar nano-scale structures to bypass hydrogen and create a new type of fuel cell that can transform renewable biofuels like biodiesel directly into electricity.

"There's not going to be a silver bullet to solve the problem, so we've got to pursue multiple approaches," McIntosh said.

The nano-scale surface structures being developed are hundreds of times smaller and more precise than existing technology, which offers several expected advantages, McIntosh said. For instance, nano-scale surface structures will make the ion reactions much quicker and more efficient. "It's very important to control the issues down at that scale where everything is happening," McIntosh noted.

More efficient chemical reactions may allow these new fuel cells - known as direct-hydrocarbon solid oxide fuel cells - to operate at much lower temperatures (500 degrees Celsius instead of 800), making them more stable and longer-lasting, McIntosh said.

The goal is a fuel cell that can produce 10,000 hours of electricity to be used in a new type of small power plant, which would provide enough power for a small town or even a city block. A distributed power grid based on such plants would be more efficient than our current power grid.

Even though nano-technology seems to have great potential to improve these types of solar and fuel cells, so far only one paper on this topic has been published, said McIntosh, who last year won a $400,000 National Science Foundation (NSF) Faculty Early Career Development grant for his pioneering work on fuel cells.

His U.Va. collaborators on the current research project are Despina Louca, an associate professor of physics, and Giovanni Zangari, an associate professor of materials science and engineering. Zangari is an expert on the "solar cell" half of the project. Louca will use neutron diffraction equipment at the Oak Ridge National Laboratory in Tennessee to measure how the nanoscale structures work over time.

Any improvements in fuel cell technology are highly sought after and should quickly attract further research dollars from agencies like the U.S. Department of Energy, or the Defense Advanced Research Projects Agency (DARPA), which has put out a request for a portable power generator that uses fuel cells running directly on diesel fuel, McIntosh said.

In the meantime, he said, this seed grant "gets people motivated and gets them going."

####

About University of Virginia
The University of Virginia is recognized as a leading institution in humanities, social sciences, and arts scholarship. We are now committed to enhancing research in key interdisciplinary areas of science and engineering. In building these complementary strengths, we cultivate a University research culture that supports innovation and ultimately leads to discoveries that will transform society.

For more information, please click here

Contacts:
H. Brevy Cannon IV
General Assignments Writer
(434) 243-0368

Copyright © University of Virginia

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Discovery of nanotubes offers new clues about cell-to-cell communication July 2nd, 2015

Nanospiked bacteria are the brightest hard X-ray emitters July 2nd, 2015

Engineering the world’s smallest nanocrystal July 2nd, 2015

Producing spin-entangled electrons July 2nd, 2015

Discoveries

The quantum middle man July 2nd, 2015

Freezing single atoms to absolute zero with microwaves brings quantum technology closer: Atoms frozen to absolute zero using microwaves July 2nd, 2015

Producing spin-entangled electrons July 2nd, 2015

NIST Group Maps Distribution of Carbon Nanotubes in Composite Materials July 2nd, 2015

Announcements

Nanospiked bacteria are the brightest hard X-ray emitters July 2nd, 2015

Engineering the world’s smallest nanocrystal July 2nd, 2015

Producing spin-entangled electrons July 2nd, 2015

NIST Group Maps Distribution of Carbon Nanotubes in Composite Materials July 2nd, 2015

Energy

New technology using silver may hold key to electronics advances July 2nd, 2015

Visible Light-Sensitive Photocatalysts Used for Purification of Contaminated Water in Iran June 30th, 2015

June 29th, 2015

Making new materials with micro-explosions: ANU media release: Scientists have made exotic new materials by creating laser-induced micro-explosions in silicon, the common computer chip material June 29th, 2015

Fuel Cells

The Hydrogen-Fuel cell will revolutionize the economy of the world: New non-platinum and nanosized catalyst for polymer electrolyte fuel cell June 29th, 2015

X-rays and electrons join forces to map catalytic reactions in real-time: New technique combines electron microscopy and synchrotron X-rays to track chemical reactions under real operating conditions June 29th, 2015

Buckle up for fast ionic conduction June 16th, 2015

A protective shield for sensitive catalysts: Hydrogels block harmful oxygen June 15th, 2015

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Discovery of nanotubes offers new clues about cell-to-cell communication July 2nd, 2015

World’s 1st Full-Color, Flexible, Skin-Like Display Developed at UCF June 24th, 2015

Physicists fine-tune control of agile exotic materials: Tunable hybrid polaritons realized with graphene layer on hexagonal boron nitride June 24th, 2015

Robust new process forms 3-D shapes from flat sheets of graphene June 23rd, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project