Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Nanotech Fuel Cell Research May Clear Hydrogen Hurdles

    This nano-scale honeycomb structure enables more efficient chemical reactions in a new generation of fuel cells. (click for high-res version) 

    (Photo: Yannick C. Kimmel, an undergraduate student in the School of Engineering and Applied Science who is working on this research)
This nano-scale honeycomb structure enables more efficient chemical reactions in a new generation of fuel cells. (click for high-res version)

(Photo: Yannick C. Kimmel, an undergraduate student in the School of Engineering and Applied Science who is working on this research)

Abstract:
Fuel cells are one of the most touted new energy technologies. They directly convert the chemical energy of fuels into electrical energy, doing so roughly twice as efficiently as a diesel engine.

The biggest stumbling block preventing the widespread adoption of fuel cell technology has been a reliance on hydrogen as the "fuel." Not only is hydrogen both difficult and dangerous to store and distribute, but 96 percent of hydrogen comes from oil and gas. Fuel cells that rely on hydrogen do little to reduce fossil fuel use.

New research from a University of Virginia team, recently funded by a new U.Va. Collaborative Sustainable Energy Seed Grant worth about $30,000, is taking two approaches to removing the need for hydrogen.

Nanotech Fuel Cell Research May Clear Hydrogen Hurdles

Charlottesville, VA | Posted on August 5th, 2008

The twin projects will both use similar nano-scale engineering in very different applications, explained team member Steve McIntosh, an assistant professor of chemical engineering. One half of the project will apply new nano-scale structures to try and create a new type of "solar cell" that will gather the energy of sunlight to electrochemically split water into its molecular components of oxygen and hydrogen, which could potentially provide a practically limitless, renewable source of hydrogen.

The other half of the research will use similar nano-scale structures to bypass hydrogen and create a new type of fuel cell that can transform renewable biofuels like biodiesel directly into electricity.

"There's not going to be a silver bullet to solve the problem, so we've got to pursue multiple approaches," McIntosh said.

The nano-scale surface structures being developed are hundreds of times smaller and more precise than existing technology, which offers several expected advantages, McIntosh said. For instance, nano-scale surface structures will make the ion reactions much quicker and more efficient. "It's very important to control the issues down at that scale where everything is happening," McIntosh noted.

More efficient chemical reactions may allow these new fuel cells - known as direct-hydrocarbon solid oxide fuel cells - to operate at much lower temperatures (500 degrees Celsius instead of 800), making them more stable and longer-lasting, McIntosh said.

The goal is a fuel cell that can produce 10,000 hours of electricity to be used in a new type of small power plant, which would provide enough power for a small town or even a city block. A distributed power grid based on such plants would be more efficient than our current power grid.

Even though nano-technology seems to have great potential to improve these types of solar and fuel cells, so far only one paper on this topic has been published, said McIntosh, who last year won a $400,000 National Science Foundation (NSF) Faculty Early Career Development grant for his pioneering work on fuel cells.

His U.Va. collaborators on the current research project are Despina Louca, an associate professor of physics, and Giovanni Zangari, an associate professor of materials science and engineering. Zangari is an expert on the "solar cell" half of the project. Louca will use neutron diffraction equipment at the Oak Ridge National Laboratory in Tennessee to measure how the nanoscale structures work over time.

Any improvements in fuel cell technology are highly sought after and should quickly attract further research dollars from agencies like the U.S. Department of Energy, or the Defense Advanced Research Projects Agency (DARPA), which has put out a request for a portable power generator that uses fuel cells running directly on diesel fuel, McIntosh said.

In the meantime, he said, this seed grant "gets people motivated and gets them going."

####

About University of Virginia
The University of Virginia is recognized as a leading institution in humanities, social sciences, and arts scholarship. We are now committed to enhancing research in key interdisciplinary areas of science and engineering. In building these complementary strengths, we cultivate a University research culture that supports innovation and ultimately leads to discoveries that will transform society.

For more information, please click here

Contacts:
H. Brevy Cannon IV
General Assignments Writer
(434) 243-0368

Copyright © University of Virginia

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Sandia use confined nanoparticles to improve hydrogen storage materials performance: Big changes from a small package for hydrogen storage February 25th, 2017

New nano approach could cut dose of leading HIV treatment in half February 24th, 2017

Atom-scale oxidation mechanism of nanoparticles helps develop anti-corrosion materials February 24th, 2017

Atomic force imaging used to study nematodes: KFU bionanotechnology lab (head - Dr. Rawil Fakhrullin) has obtained 3-D images of nematodes' cuticles February 23rd, 2017

Discoveries

Sandia use confined nanoparticles to improve hydrogen storage materials performance: Big changes from a small package for hydrogen storage February 25th, 2017

New nano approach could cut dose of leading HIV treatment in half February 24th, 2017

Atom-scale oxidation mechanism of nanoparticles helps develop anti-corrosion materials February 24th, 2017

Atomic force imaging used to study nematodes: KFU bionanotechnology lab (head - Dr. Rawil Fakhrullin) has obtained 3-D images of nematodes' cuticles February 23rd, 2017

Announcements

Sandia use confined nanoparticles to improve hydrogen storage materials performance: Big changes from a small package for hydrogen storage February 25th, 2017

New nano approach could cut dose of leading HIV treatment in half February 24th, 2017

Atom-scale oxidation mechanism of nanoparticles helps develop anti-corrosion materials February 24th, 2017

Atomic force imaging used to study nematodes: KFU bionanotechnology lab (head - Dr. Rawil Fakhrullin) has obtained 3-D images of nematodes' cuticles February 23rd, 2017

Energy

Sandia use confined nanoparticles to improve hydrogen storage materials performance: Big changes from a small package for hydrogen storage February 25th, 2017

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

In-cell molecular sieve from protein crystal February 14th, 2017

Fuel Cells

Scientists boost catalytic activity for key chemical reaction in fuel cells: New platinum-based catalysts with tensile surface strain could improve fuel cell efficiency December 19th, 2016

It's basic: Alternative fuel cell technology reduces cost: Study sets performance targets for metal-free fuel cell membrane December 13th, 2016

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Water vapor sets some oxides aflutter: Newly discovered phenomenon could affect materials in batteries and water-splitting devices October 3rd, 2016

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Sandia use confined nanoparticles to improve hydrogen storage materials performance: Big changes from a small package for hydrogen storage February 25th, 2017

Oxford Instruments announces Dr Brad Ramshaw of Cornell University, as winner of the 2017 Lee Osheroff Richardson Science Prize February 20th, 2017

Nominations Invited for $250,000 Kabiller Prize in Nanoscience: Major international prize recognizes a visionary nanotechnology researcher February 20th, 2017

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project