Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > UCSB Researchers Make Milestone Discovery in Quantum Mechanics

A close-up of one of the circuits used in the quantum mechanics experiment.
A close-up of one of the circuits used in the quantum mechanics experiment.

Abstract:
Researchers at UC Santa Barbara have recently reached what they are calling a milestone in experimental quantum mechanics.

UCSB Researchers Make Milestone Discovery in Quantum Mechanics

Santa Barbara, CA | Posted on August 5th, 2008

In a paper published in the July 17 issue of the journal Nature, UCSB physicists Max Hofheinz, John Martinis, and Andrew Cleland documented how they used a superconducting electronic circuit known as a Josephson phase qubit, developed in Martinis's lab, to controllably pump microwave photons, one at a time, into a superconducting microwave resonator.

Up to six photons were pumped into and stored in the resonator, and their presence was then detected using the qubit, which acts like an electronic atom, as an analyzer. The photon number states, known as Fock states, have never before been controllably created, said Cleland.

"These states are ones you learn about in introductory quantum mechanics classes, but no one has been able to controllably create them before," Cleland said.

Using the same technique, the researchers also created another type of special state, known as a coherent state, in the superconducting resonator. These states are relatively easily generated, and appear to behave in a completely non-quantum mechanical fashion, but by using the same analysis technique, the UCSB researchers were able to demonstrate the expected underlying quantum behavior.

Hofheinz, a postdoctoral researcher from Germany who's been at UCSB for the past year working on this project, explained how the resonator works.

"The resonator is the electrical equivalent of a pendulum," Hofheinz said. "In quantum mechanics the energy, or amplitude of motion of this pendulum, only comes in finite steps, in quanta. We first carefully prepared the resonator in these quantum states, and showed we could do this controllably and then measure the states. Then we ‘kicked' the pendulum directly, a method where the amplitude can take on any value, and appears to not be limited to these quanta. But when we look at the resonator with our qubit, we see that the amplitude does come in steps, but that the resonator is actually in several such states at the same time, so that on average it looks like it is not limited to the quantum states."

Hofheinz spent several months in the UCSB Nanofabrication cleanroom fabricating the device used for the experiment. "This resonator, once you excite it, has to 'swing' for a very long time," he explained. "The first samples I fabricated stopped oscillating very quickly. We had to work to rearrange the fabrication method to get the resonator to oscillate longer."

He then fine-tuned the microwave electronics built by Martinis's group to emit the precisely shaped signals necessary to produce these exciting results.

Martinis, Cleland, and Hofheinz say that their research could help in the quest to build a possible quantum computer, which both the government and industry have been seeking for a long time. A quantum computer could be used to break - or make - the encryption codes most heavily used for secure communication.

"Harmonic oscillators might allow us to get a quantum computer built more quickly," Cleland said.

"I think if they really build one of these quantum computers, there will definitely be resonators in them," Hofheinz said.

####

Contacts:
George Foulsham
805-893-3071


FEATURED RESEARCHERS

Andrew Cleland
805-893-5401


John Martinis
805-893-3910


Max Hofheinz
805-893-5218

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Leti IEDM 2016 Paper Clarifies Correlation between Endurance, Window Margin and Retention in RRAM for First Time: Paper Presented at IEDM 2016 Offers Ways to Reconcile High-cycling Requirements and Instability at High Temperatures in Resistive RAM December 6th, 2016

Tokyo Institute of Technology research: 3D solutions to energy savings in silicon power transistors December 6th, 2016

Physicists decipher electronic properties of materials in work that may change transistors December 6th, 2016

Infrared instrumentation leader secures exclusive use of Vantablack coating December 5th, 2016

Quantum Computing

Construction of practical quantum computers radically simplified: Scientists invent ground-breaking new method that puts quantum computers within reach December 5th, 2016

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

Single photon converter -- a key component of quantum internet November 28th, 2016

Leti and Grenoble Partners Demonstrate World’s 1st Qubit Device Fabricated in CMOS Process: Paper by Leti, Inac and University of Grenoble Alpes Published in Nature Communications November 28th, 2016

Discoveries

Leti IEDM 2016 Paper Clarifies Correlation between Endurance, Window Margin and Retention in RRAM for First Time: Paper Presented at IEDM 2016 Offers Ways to Reconcile High-cycling Requirements and Instability at High Temperatures in Resistive RAM December 6th, 2016

Tokyo Institute of Technology research: 3D solutions to energy savings in silicon power transistors December 6th, 2016

Physicists decipher electronic properties of materials in work that may change transistors December 6th, 2016

Fast, efficient sperm tails inspire nanobiotechnology December 5th, 2016

Announcements

Leti IEDM 2016 Paper Clarifies Correlation between Endurance, Window Margin and Retention in RRAM for First Time: Paper Presented at IEDM 2016 Offers Ways to Reconcile High-cycling Requirements and Instability at High Temperatures in Resistive RAM December 6th, 2016

Tokyo Institute of Technology research: 3D solutions to energy savings in silicon power transistors December 6th, 2016

Physicists decipher electronic properties of materials in work that may change transistors December 6th, 2016

Infrared instrumentation leader secures exclusive use of Vantablack coating December 5th, 2016

Quantum nanoscience

Physicists decipher electronic properties of materials in work that may change transistors December 6th, 2016

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

Trickling electrons: Close to absolute zero, the particles exhibit their quantum nature November 10th, 2016

Scientists set traps for atoms with single-particle precision: Technique may enable large-scale atom arrays for quantum computing November 7th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project