Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > UNC study: shape, not just size, impacts effectiveness of emerging nanomedicine therapies

Abstract:
In the budding field of nanotechnology, scientists already know that size does matter.

But now, researchers at the University of North Carolina at Chapel Hill have shown that shape matters even more — a finding that could lead to new and more effective methods for treating cancer and other diseases, from diabetes and multiple sclerosis to arthritis and obesity.

UNC study: shape, not just size, impacts effectiveness of emerging nanomedicine therapies

Chapel Hill, NC | Posted on August 4th, 2008

A team of researchers led by Joseph DeSimone, Ph.D., Chancellor's Eminent Professor of Chemistry in UNC's College of Arts and Sciences and William R. Kenan, Jr. Distinguished Professor of Chemical Engineering at North Carolina State University, and Stephanie Gratton, a graduate student in DeSimone's lab, have demonstrated that nanoparticles designed with a specific shape, size and surface chemistry are taken up into cells and behave differently within cells depending on these attributes.

Their findings appear in this week's online early edition of the journal PNAS, the Proceedings of the National Academy of Sciences.

Using nanoparticles to combat cancer is an area of interest for many researchers. For decades, treating the disease has mostly involved injecting patients with toxic drugs - a practice in which only a fraction of the drugs reach the intended target, killing healthy cells in the process and causing harmful side effects.

Previous studies have shown that drug-carrying nanoparticles can hone-in on and attack tumors, in part because of their extremely small size — less than 100 nanometers (one nanometer = one billionth of a meter) — which helps allow them to pass through cell membranes. However, up until now, existing techniques have meant that targeting agents could only be delivered using spherical or granular shaped particles.

Using PRINT® (Particle Replication in Non-wetting Templates) technology — a technique invented in DeSimone's lab that allows scientists to design and produce "custom-made" nanoparticles — the UNC researchers made particles with specific shapes, sizes and surface charges. DeSimone said the aim is to optimize particle attributes for specific therapeutic objectives.

"This would mean that we could deliver lower dosages of drugs to specific cells and tissues in the body and actually be more effective in treating the cancer," said DeSimone, who is also a member of UNC's Lineberger Comprehensive Cancer Center and the co-principal investigator for the Carolina Center for Cancer Nanotechnology Excellence.

Creating particles of different dimensions, the UNC researchers changed one variable at a time, and experimented with different surface chemistries. They then incubated the different particles with human cervical carcinoma epithelial (HeLa) cells, monitoring each type to see which ones the cells absorbed most effectively.

For instance, the scientists discovered that long, rod-shaped particles (diameter, 150 nanometers; height, 450 nanometers) were internalized by cells approximately four times faster than lower aspect ratio particles (diameter, 200 nanometers; height, 200 nanometers), and traveled significantly further into the cells as well.

Gratton noted the same phenomenon is found in natural organisms.

"The long rod-shaped structure of bacteria may help explain why PRINT® particles of higher aspect ratios are internalized more rapidly and effectively than lower aspect ratio particles," she said. "If we can design particles that rely on the same mechanisms that nature has perfected for bacteria, we may unlock the key for delivering therapeutics more efficiently and effectively to treat and cure disease."

Liquidia Technologies, a UNC spin-off company, has an exclusive license to the PRINT® technology and is developing engineered nanoparticles for delivery of nucleic acids and small molecule therapeutics. Liquidia also sponsors research in the DeSimone lab. The company's chief executive officer, Neal Fowler, said the study's findings should prove of interest to the biopharmaceutical industry.

"We are delighted to contribute to the important work that Professor DeSimone and his students are undertaking in the field of nanomedicine. This work answers key questions about the role of particle shape and size that industry leaders have been asking for some time," Fowler said.

###

The study was funded by the National Science Foundation, the National Institutes for Health, the Carolina Center for Cancer Nanotechnology Excellence, the William R. Kenan Professorship and Liquidia Technologies.

Other UNC researchers who contributed to the study are Patricia Ropp, Ph.D., Patrick Pohlhaus, Ph.D., Christopher Luft, Ph.D. and Mary Napier, Ph.D., from the chemistry department and the Carolina Center for Cancer Nanotechnology Excellence, along with Victoria Madden, Ph.D., from the School of Medicine's pathology department.

The Carolina Center for Cancer Nanotechnology Excellence is part of the NCI Alliance for Nanotechnology in Cancer, a comprehensive initiative designed to accelerate the application of nanotechnology to the prevention, diagnosis and treatment of cancer. To learn more about the program, go to nano.cancer.gov.

To see an image of PRINT® nanoparticles, go to:
uncnews.unc.edu/images/stories/news/science/2008/nano%20shapes%20release%20image.jpg

NOTE: DeSimone can be reached at (919) 697-5324 or .

College of Arts & Sciences contact: Kim Spurr, (919) 962-4093,
News Services contact: Patric Lane, (919) 962-8596,

####

For more information, please click here

Contacts:
Patric Lane

919-962-8596

Copyright © University of North Carolina at Chapel Hill

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Seeing quantum motion August 30th, 2015

Artificial leaf harnesses sunlight for efficient fuel production August 30th, 2015

Researchers use DNA 'clews' to shuttle CRISPR-Cas9 gene-editing tool into cells August 30th, 2015

Draw out of the predicted interatomic force August 30th, 2015

Nanomedicine

Researchers use DNA 'clews' to shuttle CRISPR-Cas9 gene-editing tool into cells August 30th, 2015

Iranian Scientists Use Artemisia Annua Plant to Produce Breast Cancer Drugs August 29th, 2015

Small but heading for the big time: Nanobiotix half year results for the six months ended 30 June 2015, in line with expectations: Major clinical achievements and corporate developments August 28th, 2015

A new technique to make drugs more soluble August 28th, 2015

Discoveries

Seeing quantum motion August 30th, 2015

Artificial leaf harnesses sunlight for efficient fuel production August 30th, 2015

Researchers use DNA 'clews' to shuttle CRISPR-Cas9 gene-editing tool into cells August 30th, 2015

Draw out of the predicted interatomic force August 30th, 2015

Announcements

Seeing quantum motion August 30th, 2015

Artificial leaf harnesses sunlight for efficient fuel production August 30th, 2015

Researchers use DNA 'clews' to shuttle CRISPR-Cas9 gene-editing tool into cells August 30th, 2015

Draw out of the predicted interatomic force August 30th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic