Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Protection built to scale--fish scale, that is: Primitive 'dinosaur eel' could inspire future body armor

Researchers at MIT's Institute for Soldier Nanotechnologies have unraveled exactly how the layers of the fish's scales complement one another to protect the soft tissues inside the fish body. Photo / Donna Coveney
Researchers at MIT's Institute for Soldier Nanotechnologies have unraveled exactly how the layers of the fish's scales complement one another to protect the soft tissues inside the fish body. Photo / Donna Coveney

Abstract:
Scientists seeking to protect the soldier of the future can learn a lot from a relic of the past, according to an MIT study of a primitive fish that could point to more effective ways of designing human body armor.

Protection built to scale--fish scale, that is: Primitive 'dinosaur eel' could inspire future body armor

Cambridge, MA | Posted on August 3rd, 2008

The creature in question is Polypterus senegalus, a fish whose family tree can be traced back 96 million years and who still inhabits muddy, freshwater pools in Africa. Unlike the vast majority of fish today, P. senegalus sports a full-body armored "suit" that most fish would have had millions of years ago--a throwback that helps explain why it is nicknamed the "dinosaur eel."

It was known that the fish's individual armored scales were comprised of multiple material layers--each of them about 100 millionths of a meter thick. But in a U.S. Army-funded study carried out through the MIT Institute for Soldier Nanotechnologies and published in the July 27 online issue of Nature Materials, a team of MIT engineers unraveled exactly how the layers complement one another to protect the soft tissues inside the fish body--particularly from a penetrating biting attack. P. senegalus is known to be territorial and attack members of its own species that are of similar or smaller size.

Specifically, the team used nanotechnological methods to measure the material properties through the thickness of one individual fish scale--about 500 millionths of a meter thick--and its four different layer materials. The different materials, the geometry and thickness of each layer, the sequence of the layers and the junctions between layers all contribute to an efficient design that helps the fish survive a penetrating attack such as a bite.

This research will help to better understand the relationship between a specific threat and the corresponding design of a protective armor, the team said.

"Such fundamental knowledge holds great potential for the development of improved biologically inspired structural materials, for example soldier, first-responder and military vehicle armor applications," said lead author Christine Ortiz, an associate professor in MIT's Department of Materials Science and Engineering.

"Many of the design principles we describe--durable interfaces and energy-dissipating mechanisms, for instance--may be translatable to human armor systems," Ortiz added.

One way in which the researchers tested the fish armor was by experimentally mimicking a biting attack on top of an individual scale that had been surgically removed from a living fish. The team found that the design of the P. senegalus armor kept the crack localized by forcing it to run in a circle around the penetration site, rather than spreading through the entire scale and leading to catastrophic failure, like many ceramic materials.

This study was carried out in collaboration with co-author Professor Mary Boyce, chair of MIT's Department of Mechanical Engineering. The study has two first authors: Benjamin Bruet, a former member of Ortiz's lab who recently received a PhD in materials science and engineering from MIT, and Juha Song, a joint doctoral student between Ortiz and Boyce.

####

For more information, please click here

Contacts:
Jen Hirsch
MIT News Office
Phone: 617-253-2700

Copyright © MIT

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

First Observation of Electronic Structure in Ag-Rh Alloy Nanoparticles Having Hydrogen Absorbing: Storage Property –Attempting to solve the mystery of why Ag-Rh alloy nanoparticles have a similar property to Pd– October 30th, 2014

Iranians Present Model to Predict Photocatalytic Process in Removal of Pollutants October 30th, 2014

Production of Biocompatible Polymers in Iran October 30th, 2014

Amorphous Coordination Polymer Particles as alternative to classical nanoplatforms for nanomedicine October 30th, 2014

Discoveries

First Observation of Electronic Structure in Ag-Rh Alloy Nanoparticles Having Hydrogen Absorbing: Storage Property –Attempting to solve the mystery of why Ag-Rh alloy nanoparticles have a similar property to Pd– October 30th, 2014

Iranians Present Model to Predict Photocatalytic Process in Removal of Pollutants October 30th, 2014

Production of Biocompatible Polymers in Iran October 30th, 2014

Amorphous Coordination Polymer Particles as alternative to classical nanoplatforms for nanomedicine October 30th, 2014

Announcements

First Observation of Electronic Structure in Ag-Rh Alloy Nanoparticles Having Hydrogen Absorbing: Storage Property –Attempting to solve the mystery of why Ag-Rh alloy nanoparticles have a similar property to Pd– October 30th, 2014

Iranians Present Model to Predict Photocatalytic Process in Removal of Pollutants October 30th, 2014

Production of Biocompatible Polymers in Iran October 30th, 2014

Amorphous Coordination Polymer Particles as alternative to classical nanoplatforms for nanomedicine October 30th, 2014

Military

Microrockets fueled by water neutralize chemical and biological warfare agents October 29th, 2014

Breakthrough in molecular electronics paves the way for DNA-based computer circuits in the future: DNA-based programmable circuits could be more sophisticated, cheaper and simpler to make October 27th, 2014

NanoTechnology for Defense (NT4D) October 22nd, 2014

Imaging electric charge propagating along microbial nanowires October 20th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE