Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > The Brightest, Sharpest, Fastest X-Ray Holograms Yet

A coherent x-ray beam illuminates both the sample and a uniformly redundant array (URA) placed next to it. The CCD detector (whose center is shielded from the direct beam) collects diffracted x-rays from both sample and URA. Processing the resulting interference patterns subsequently yields a hologram.
A coherent x-ray beam illuminates both the sample and a uniformly redundant array (URA) placed next to it. The CCD detector (whose center is shielded from the direct beam) collects diffracted x-rays from both sample and URA. Processing the resulting interference patterns subsequently yields a hologram.

Abstract:
The pinhole camera, a technique known since ancient times, has inspired a futuristic technology for lensless, three-dimensional imaging. Working at both the Advanced Light Source (ALS) at the U.S. Department of Energy's Lawrence Berkeley National Laboratory, and at FLASH, the free-electron laser in Hamburg, Germany, an international group of scientists has produced two of the brightest, sharpest x-ray holograms of microscopic objects ever made, thousands of times more efficiently than previous x-ray-holographic methods.

The Brightest, Sharpest, Fastest X-Ray Holograms Yet

BERKELEY, CA | Posted on August 2nd, 2008

The x-ray hologram made at ALS beamline 9.0.1 was of Leonardo da Vinci's famous drawing, "Vitruvian Man," a lithographic reproduction less than two micrometers (millionths of a meter, or microns) square, etched with an electron-beam nanowriter. The hologram required a five-second exposure and had a resolution of 50 nanometers (billionths of a meter).

The other hologram, made at FLASH, was of a single bacterium, Spiroplasma milliferum, made at 150-nanometer resolution and computer-refined to 75 nanometers, but requiring an exposure to the beam of just 15 femtoseconds (quadrillionths of a second).

The values for these two holograms are among the best ever reported for micron-sized objects. With already established technologies, resolutions obtained by these methods could be pushed to only a few nanometers, or, using computer refinement, even better.

The researchers were from Berkeley Lab; Lawrence Livermore National Laboratory; the Stanford Linear Accelerator Center; Uppsala University, Sweden; the University of Hamburg and the Deutsches Elektronen-Synchrotron (DESY), Germany; Arizona State University; Princeton University; and the University of California at Berkeley. Their results appear in advanced online publication of Nature Photonics, available online to subscribers at www.nature.com/nphoton/index.html.
The modern pinhole camera

"Our purpose was to explore methods of making images of nanoscale objects on the time scale of atomic motions, a length and time regime that promises to become accessible with advances in free-electron lasers," says Stefano Marchesini of the ALS, who led the research. "The technique we used is called massively parallel x-ray Fourier-transform holography, with ‘coded apertures.' What inspired me to try this approach was the pinhole camera."

The ancient Greeks made note of pinhole-camera effects without understanding them; later, pinhole cameras were used by Chinese, Arab, and European scholars. Renaissance painters learned the principals of perspective using the camera obscura, literally a "dark room," with a pinhole in one wall that projected the outside scene onto the opposite wall.

"The room had to be dark for the good reason that a sharp image requires a small pinhole, but a small pinhole also produces a dim image," says Marchesini. "To get a brighter image without lenses you have to use many pinholes. The problem then becomes how to assemble the information, including depth information, from the overlapping shadow images. This is where ‘coded apertures' come in."

By knowing the precise layout of a pinhole array, including the different sizes of the different pinholes, a computer can recover a bright, high-resolution image numerically. Random pinhole arrays were first used in x-ray astronomy but soon evolved into regular rows and columns of tiny square apertures of varying dimension. These coded apertures are called uniformly redundant arrays, or URAs.

Marchesini knew that colleagues at Livermore were using URAs in gamma-ray detectors. He asked himself, "What would happen if we put a URA right next to an object we were imaging with the x-ray beamline? It should allow us to create a holographic image - one with orders of magnitude more intensity than a standard hologram."
Holography with x-rays

Holography was invented over 60 years ago by the physicist Dennis Gabor, but its use has long been limited by technology. Whereas a pinhole camera employs ray optics, in which the photons travel like a stream of particles, holography depends on the wave-like properties of light.

The principle is straightforward: a beam of light illuminates an object, which scatters the light onto a detector such as a photographic plate. Meanwhile a second, identical beam of light shines directly on the detector. The scattered light waves from the object beam form interference patterns with the unscattered light waves from the reference beam.

This interference pattern serves to reconstruct an image of the object. One easy way to do so, if the detector is a photo transparency, is for the observer to look through the transparency in the direction of the (now absent) object; if only the reference beam is shining on the detector, the interference pattern serves to "unscatter" (diffract) the wavefront and reconstruct the object's image.

Lasers, which produce coherent light (all the same phase) were the first invention that made holography practical; it is now possible to make small holograms using just a laser pointer. FLASH is a powerful free-electron laser (FEL); a new generation of FELs of much shorter wavelength will be capable of producing coherent light pulses so short they'll be able to freeze atomic motion in the midst of chemical reactions.

Soft x-rays like those from ALS beamline 9.0.1 can also be made coherent, or laser-like, using a pair of pinholes. (The beam is conditioned by these pinholes, but they are not directly involved in imaging, except to make the beam laser-like.) To make a hologram, the beam issuing from the synchrotron scatters from the target object and is collected on a CCD detector. Meanwhile the same beam simultaneously passes through the multiple-"pinhole" URA, mounted on the same plate as the target object, and produces a bright reference beam.

The scattered image of the object and the many overlapping reference beams from the URA combine to make an interference pattern which contains all the information, including the relative depth of individual features, needed to mathematically reconstruct a three-dimensional image of the object.

The hologram of the Spiroplasma bacterium was made in precisely the same way, with much brighter x-ray beams and a much shorter pulse of light. So bright was the flash of light that the sample was vaporized, but not before both the scattered object beam and the reference beams from the URA had been recorded.

Together, the two experiments demonstrate that holographic x-ray images with nanometer-scale resolution can be made of objects measured in microns, in times as brief as femtoseconds. Moreover, sample preparation time is fast and easily repeated for high throughput during repetitive experiments. As the researchers write in their Nature Photonics article, "Imaging with coherent x-rays will be a key technique for developing nanoscience and nanotechnology, and massively parallel holography will be an enabling tool in this quest."

"Massively parallel x-ray holography," by Stefano Marchesini, Sébastien Boutet, Anne E. Sakdinawat, Michael J. Bogan, Sǎsa Bajt, Anton Barty, Henry N. Chapman, Matthias Frank, Stefan P. Hau-Riege, Abraham Szöke, Congwu Cui, David Shapiro, Malcolm Howells, John Spence, Joshua Shaevitz, Joanna Lee, Janos Hajdu, and Marvin M. Siebert, appears in advanced online publication of Nature Photonics and is available online to subscribers at http://www.nature.com/nphoton/index.html.

This work was supported by grants from the U.S. Department of Energy, the European Union, the Swedish Research Councils, the Munich Centre for Advanced Photonics, the Natural Sciences and Engineering Research Council of Canada, and the Sven and Lilly Lawskis Foundation.

####

About Berkeley Lab
Berkeley Lab is a U.S. Department of Energy national laboratory located in Berkeley, California. It conducts unclassified scientific research and is managed by the University of California.

For more information, please click here

Contacts:
Paul Preuss
(510) 486-6249

Copyright © Berkeley Lab

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Imaging

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

Laboratories

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Govt.-Legislation/Regulation/Funding/Policy

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Photonics/Optics/Lasers

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Research partnerships

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project