Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Scientists determine strength of “liquid smoke” with 3D images

Section and isosurface rendering of a 500-nanometer cube from the interior of the 3D volume. The foam structure shows globular nodes that are interconnected by thin beam-like struts. Approximately 85 percent of the total mass is associated with the nodes, and there is no evidence of a significant fraction of dangling fragments.
Section and isosurface rendering of a 500-nanometer cube from the interior of the 3D volume. The foam structure shows globular nodes that are interconnected by thin beam-like struts. Approximately 85 percent of the total mass is associated with the nodes, and there is no evidence of a significant fraction of dangling fragments.

Abstract:
Researchers have created a 3D image of a material referred to as "liquid smoke."

Aerogel, also known as liquid smoke or "San Francisco fog," is an open-cell polymer with pores smaller than 50 nanometers in diameter.

For the first time, Lawrence Livermore and Lawrence Berkeley scientists have peered into this material and created three-dimensional images to determine its strength and potential new applications.

Scientists determine strength of “liquid smoke” with 3D images

LIVERMORE, CA | Posted on July 29th, 2008

Aerogel is a form of nanofoam, an engineered material designed for high strengh-to-weight ratio. Such nanofoam structires are also present in the fields of geology, phospholipids, cells, bone structure, polymers and structural materials, wherever lightness and strength are needed.

These mesoporous (2-50 nanometer-sized pores) crystalline materials can be used as catalysts for cleaner fuels and for the diffusion of water and oil in porous rocks. The structure and diffusion properties of nanofoams are determined by their structure.

Aerogels have the highest internal surface area per gram of material of any known materials because of its complicated, cross-linked internal structure. They also exhibit the best electrical, thermal and sound insulation properties of any known solid. It's not easy to see inside aerogel to determine the topology and structure at nanoscale-length scales because the smallest pore is normally too small to be observed internally by any conventional microscope.

But Livermore scientist Anton Barty and Lawrence Berkeley researcher and former LLNL scientist Stefano Marchesini were determined. They inverted coherent X-ray diffraction patterns to capture the three-dimensional bulk lattice arrangement of a micron-sized piece of aerogel.

"By imaging an isolated object at high resolution in three dimensions, we've opened the door to a range of applications in material science, nanotechnology and cellular biology," Barty said.

For about 20 years, Livermore has developed and improved aerogels for national security applications, synthesized electrically conductive inorganic aerogels for use as supercapacitors, and as a water purifier for extracting harmful contaminants from industrial waste or for desalinizing seawater, and even used aerogel to capture stardust particles during NASA's Stardust mission.

The new research shows that the lattice structure within aerogel is weaker than expected. The researchers saw a structure made up of nodes connected by thin beams.

"This blob and beam structure explains why these low-density materials are weaker than predicted and explains the high mass scaling exponent seen in the materials," Barty said.

In the future, the 3D analysis could be applied to other porous materials and could help modeling filtration problems such as oil and water in minerals, Barty said.

Other Livermore researchers include Aleksandr Noy, Stefan Hau-Riege, Alexander Artyukhin, Ted Baumann, James Stolken, Tony van Buuren, John Kinney and former LLNL researcher Henry Chapman, who is now at the Centre for Free Electron Laser Science, DESY, in Hamburg, Germany.

The team used the Advanced Photon Source at Argonne National Laboratory for the experiments.

The research appears in the July 29 issue of the journal Physical Review Letters.

####

About Lawrence Livermore National Laboratory
Founded in 1952, Lawrence Livermore National Laboratory is a national security laboratory with a mission to ensure national security and apply science and technology to the important issues of our time. Lawrence Livermore National Laboratory is managed by Lawrence Livermore National Security, LLC for the U.S. Department of Energy's National Nuclear Security Administration

For more information, please click here

Contacts:
Anne M. Stark
Phone: (925) 422-9799

Copyright © Lawrence Livermore National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Oxford Instruments systems now facilitate water purification technology September 27th, 2016

Dr Barbara Armbruster promoted to Worldwide Sales and Marketing Director for XEI Scientific September 27th, 2016

Fighting cancer with sticky nanoparticles September 27th, 2016

Gold nanoparticles conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2 mediated pathway in breast cancer September 27th, 2016

Imaging

Oxford Instruments is ‘Bringing the Nanoworld Together’ in India once again - 22 - 23 November 2016 | IISc Bangalore September 21st, 2016

Bruker Introduces Complete Commercial AFM-Based SECM Solution: PeakForce SECM Mode Enables Previously Unobtainable Electrochemical Information September 20th, 2016

Iran to hold intl. school on application of nanomaterials in medicine September 20th, 2016

Oxford Instruments Asylum Research Announces New SurfRider Econo Board Probes for Routine AFM Measurements September 19th, 2016

Discoveries

Fighting cancer with sticky nanoparticles September 27th, 2016

Gold nanoparticles conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2 mediated pathway in breast cancer September 27th, 2016

UNAM develops successful nano edible coating which increases life food September 27th, 2016

Crystalline Fault Lines Provide Pathway for Solar Cell Current: New tomographic AFM imaging technique reveals that microstructural defects, generally thought to be detrimental, actually improve conductivity in cadmium telluride solar cells September 26th, 2016

Materials/Metamaterials

UNAM develops successful nano edible coating which increases life food September 27th, 2016

Crystalline Fault Lines Provide Pathway for Solar Cell Current: New tomographic AFM imaging technique reveals that microstructural defects, generally thought to be detrimental, actually improve conductivity in cadmium telluride solar cells September 26th, 2016

Chains of nanogold – forged with atomic precision September 23rd, 2016

Coffee-infused foam removes lead from contaminated water September 21st, 2016

Announcements

Oxford Instruments systems now facilitate water purification technology September 27th, 2016

Dr Barbara Armbruster promoted to Worldwide Sales and Marketing Director for XEI Scientific September 27th, 2016

Fighting cancer with sticky nanoparticles September 27th, 2016

Gold nanoparticles conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2 mediated pathway in breast cancer September 27th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic