Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Scaling down to diamond quantum electronics

Dr Pakes, right, and honours student Andrew Ford in the La Trobe Physics laboratory.
Dr Pakes, right, and honours student Andrew Ford in the La Trobe Physics laboratory.

Abstract:
Over the past three decades researchers have been competing to reduce the size of basic electronic devices. Intel has been leading the commercial effort with its recent announcement of the 'Atom' processor which incorporates transistors on the scale of tens of nanometres.

Scaling down to diamond quantum electronics

Victoria, Australia | Posted on July 28th, 2008

One nanometre is equal to a millionth of a metre so Intel's silicon chip is certainly winning on economies of scale.

La Trobe physicist Chris Pakes is aiming to scale the technology down further into the realm of quantum physics. He and co-researchers are talking about one-dimensional nano-wires and individual atoms performing the tasks of transistors, not using silicon, but diamond.

Dr Pakes and Professor John Riley lead an international team that has received one million dollars in research funding to investigate the semi-conductor properties of diamond as a new material for nano-chips.

Diamonds are now being made artificially. They come as single crystals, numbered and packaged in grids for the laboratory.

At La Trobe the stones end up in a scanning tunnelling microscope where they get plenty of loving attention as physicists fiddle with molecules called fullerenes, finding ways of pushing them into patterns on the diamond surface to form tiny electronic components.

A chain of fullerenes will induce in the diamond a wire one nanometre wide, operating at the quantum level. Here, a new set of functions comes into play. Particles will begin to behave like waves, electrons will travel in a more orderly fashion - one at a time - and the mathematical equations that normally govern electronics will no longer apply.

'If you take a standard piece of wire and increase its width, the wire's conductivity will increase over a continuous range of values,' Dr Pakes says. 'In quantum electronics if you take a nano-wire and change its width continuously you get a discrete set of properties. Resistance, for example, will relate to the 'quantised' energy levels of an electron when it is confined in the nano-wire.'

This is fundamental physics; experimental nanotechnology being built from the ground up, circuitry being laid one molecule at a time.

'There may be applications twenty to thirty years down the track in a quantum device or computer,' the physicist says. 'If this research works, and can be scaled up, computer power will be orders of magnitude greater.'

Diamond has several advantages over silicon, he says. Some quantum effects for example can be demonstrated at room temperature, giving them greater commercial potential.

'I believe it's by looking at fundamental science that real progress will be made in nano-industries. Diamonds are hard to work with, but if we can control them at the atomic scale we can potentially control them at any scale.

'In terms of research much of the exciting work has happened in the last five years. They are a relatively new material.'

The research funding includes $718,000 from an ARC Discovery Grant and an ARC Linkage Infrastructure, Equipment and Facilities Grant, which went towards buying a low-temperature scanning tunnelling microscope.

Collaborators include scientists from the University of Nottingham (UK), Kavli Institute of Nanoscience (Netherlands) and the Univeristaet Erlangen (Germany).

####

For more information, please click here

Contacts:
Mark Pearce
Tel: +61 3 9479 5246
Fax: +61 3 9479 1387
Email: m.pearce
@latrobe.edu.au

Ernest Raetz
Tel: +61 3 9479 2315
Fax: +61 3 9479 1387
Email: e.raetz @latrobe.edu.au

Copyright © La Trobe University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanotech-enabled moisturizer speeds healing of diabetic skin wounds: Spherical nucleic acids silence gene that interferes with wound healing April 24th, 2015

Fast and accurate 3-D imaging technique to track optically trapped particles April 24th, 2015

Pseudoparticles travel through photoactive material: KIT scientists measure important process in the conversion of light energy -- publication in Nature Communications April 24th, 2015

Scientists Use Nanoscale Building Blocks and DNA 'Glue' to Shape 3D Superlattices: New approach to designing ordered composite materials for possible energy applications April 23rd, 2015

Academic/Education

Iranian Female Professor Awarded UNESCO Medal in Nanoscience April 20th, 2015

JPK reports on the use of the NanoWizardŽ 3 AFM system at the Hebrew University of Jerusalem April 14th, 2015

UK National Graphene Institute Selects Bruker as Official Partner: World-Leading Graphene Research Facility Purchases Multiple Bruker AFMs April 7th, 2015

SUNY Poly CNSE and Title Sponsor SEFCU Name Capital Region Teams Advancing to the Final Round of the 2015 New York Business Plan Competition March 30th, 2015

Chip Technology

Surface matters: Huge reduction of heat conduction observed in flat silicon channels April 23rd, 2015

Drexel materials scientists putting a new spin on computing memory April 22nd, 2015

Printing Silicon on Paper, with Lasers April 21st, 2015

Advances in molecular electronics: Lights on -- molecule on: Researchers from Dresden and Konstanz succeed in light-controlled molecule switching April 20th, 2015

Discoveries

Nanotech-enabled moisturizer speeds healing of diabetic skin wounds: Spherical nucleic acids silence gene that interferes with wound healing April 24th, 2015

Fast and accurate 3-D imaging technique to track optically trapped particles April 24th, 2015

Pseudoparticles travel through photoactive material: KIT scientists measure important process in the conversion of light energy -- publication in Nature Communications April 24th, 2015

Surface matters: Huge reduction of heat conduction observed in flat silicon channels April 23rd, 2015

Announcements

Nanotech-enabled moisturizer speeds healing of diabetic skin wounds: Spherical nucleic acids silence gene that interferes with wound healing April 24th, 2015

Fast and accurate 3-D imaging technique to track optically trapped particles April 24th, 2015

Pseudoparticles travel through photoactive material: KIT scientists measure important process in the conversion of light energy -- publication in Nature Communications April 24th, 2015

Surface matters: Huge reduction of heat conduction observed in flat silicon channels April 23rd, 2015

Quantum nanoscience

Quantum 'paparazzi' film photons in the act of pairing up April 22nd, 2015

From metal to insulator and back again April 22nd, 2015

Quantum model reveals surface structure of water: National Physical Laboratory, IBM and Edinburgh University have used a new quantum model to reveal the molecular structure of water's liquid surface April 20th, 2015

Quantization of 'surface Dirac states' could lead to exotic applications April 15th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project