Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > A particular spin topology in solid-state materials has a strong influence on thermally generated electron transport

Figure 1: Schematic representation of spin chirality. Reversing one of the spins (right) results in reversing the spin chirality.
Figure 1: Schematic representation of spin chirality. Reversing one of the spins (right) results in reversing the spin chirality.

Abstract:
Chirality, or handedness—where an object cannot be superimposed on its mirror image—is found in many physical systems. In the case of electron spin—the smallest magnetic field generated by an electron—the chirality shown by some compounds can be quantified by the solid angle subtended by three nearby spins, and can be controlled by the application of a magnetic field (Fig. 1).

A particular spin topology in solid-state materials has a strong influence on thermally generated electron transport

Japan | Posted on July 25th, 2008

Shigeki Onoda from the RIKEN's Advanced Science Institute (formerly the Discovery Research Institute), Wako, and colleagues from Japan and Hungary have studied the effect of spin chirality on the transport properties in solid-state materials1. Spin chirality has been shown to have an effect on other transport properties, for example in the so-called anomalous Hall effects2, in which no temperature gradient is involved.

"Spin chirality bears a fictitious magnetic field and bends the electron motion driven by the temperature gradient, [thus] introducing a transverse current," explains Onoda. "The direction in which the electron motion is bent depends on the sign of the spin chirality."

In their study, the researchers focussed on whether spin chirality influences the Nernst effect, which describes the generation of an electric current in the direction perpendicular to that of a temperature gradient.

Onoda and colleagues studied a series of compounds named pyrochlore molybdates. Because some members of this family show spin chirality and others do not, they could make direct comparisons.

The comparisons between results on different compounds highlighted the effect of the spin chirality. Specifically, compounds with spin chirality showed an anomalous Nernst effect in a specific temperature range (20-30 K (-253.15- -243.15 °C)), while a compound with no spin chirality showed no effect.

The importance of the result goes beyond the specific case of the class of materials studied. "The observation of this fundamental phenomenon has revealed that a fairly large fictitious magnetic field can be generated in materials by controlling the low-energy degrees of freedom of the spin chirality," says Onoda. "The sign of the spin chirality controls that of the transverse heat/electric current. This is unlike the usual cases of Nernst effects, where [the sign of the transverse current] is exclusively determined by that of the temperature gradient and the applied magnetic field or the magnetization in particular materials." According to the researchers, their study reveals that spin chirality is really a new and promising basic quantity in electron transport phenomena.
Reference

1. Hanasaki, N., Sano, K., Onose, Y., Ohtsuka, T., Iguchi, S., Kézsmárki, I., Miyasaka, S., Onoda, S., Nagaosa, N. & Tokura, Y. Physical Review Letters 100, 106601 (2008). | article |
2. Taguchi, Y., Oohara, Y., Yoshizawa, H., Nagaosa, N. & Tokura, Y. Spin chirality, Berry phase, and anomalous Hall effect in a frustrated ferromagnet. Science 291, 2573-2576 (2001).

####

For more information, please click here

Copyright © Riken

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Bruker Announces Acquisition of Nanoindenting Leader Hysitron: Acquisition strengthens Bruker’s leading position in nanoanalysis and nanomechanical materials characterization January 24th, 2017

New low-cost technique converts bulk alloys to oxide nanowires January 24th, 2017

News from Quorum: Experienced electron microscopist, David McCarthy, talks about working with Quorum and his use of their coaters and cryo-SEM preparation instrumentation January 24th, 2017

Tough aqua material for water purification: Decontamination of water with a robust and sustainable membrane assembled from 2 synergistically working components January 24th, 2017

Physics

Traffic jam in empty space: New success for Konstanz physicists in studying the quantum vacuum January 22nd, 2017

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NIST physicists 'squeeze' light to cool microscopic drum below quantum limit January 12th, 2017

First experimental proof of a 70 year old physics theory: First observation of magnetic phase transition in 2-D materials, as predicted by the Nobel winner Onsager in 1943 January 6th, 2017

Discoveries

Graphene's sleeping superconductivity awakens: Since its discovery in 2004, scientists have believed that graphene may have the innate ability to superconduct. Now Cambridge researchers have found a way to activate that previously dormant potential January 24th, 2017

New low-cost technique converts bulk alloys to oxide nanowires January 24th, 2017

Tough aqua material for water purification: Decontamination of water with a robust and sustainable membrane assembled from 2 synergistically working components January 24th, 2017

The speed limit for intra-chip communications in microprocessors of the future January 23rd, 2017

Announcements

Bruker Announces Acquisition of Nanoindenting Leader Hysitron: Acquisition strengthens Bruker’s leading position in nanoanalysis and nanomechanical materials characterization January 24th, 2017

New low-cost technique converts bulk alloys to oxide nanowires January 24th, 2017

News from Quorum: Experienced electron microscopist, David McCarthy, talks about working with Quorum and his use of their coaters and cryo-SEM preparation instrumentation January 24th, 2017

Tough aqua material for water purification: Decontamination of water with a robust and sustainable membrane assembled from 2 synergistically working components January 24th, 2017

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project