Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > A particular spin topology in solid-state materials has a strong influence on thermally generated electron transport

Figure 1: Schematic representation of spin chirality. Reversing one of the spins (right) results in reversing the spin chirality.
Figure 1: Schematic representation of spin chirality. Reversing one of the spins (right) results in reversing the spin chirality.

Abstract:
Chirality, or handedness—where an object cannot be superimposed on its mirror image—is found in many physical systems. In the case of electron spin—the smallest magnetic field generated by an electron—the chirality shown by some compounds can be quantified by the solid angle subtended by three nearby spins, and can be controlled by the application of a magnetic field (Fig. 1).

A particular spin topology in solid-state materials has a strong influence on thermally generated electron transport

Japan | Posted on July 25th, 2008

Shigeki Onoda from the RIKEN's Advanced Science Institute (formerly the Discovery Research Institute), Wako, and colleagues from Japan and Hungary have studied the effect of spin chirality on the transport properties in solid-state materials1. Spin chirality has been shown to have an effect on other transport properties, for example in the so-called anomalous Hall effects2, in which no temperature gradient is involved.

"Spin chirality bears a fictitious magnetic field and bends the electron motion driven by the temperature gradient, [thus] introducing a transverse current," explains Onoda. "The direction in which the electron motion is bent depends on the sign of the spin chirality."

In their study, the researchers focussed on whether spin chirality influences the Nernst effect, which describes the generation of an electric current in the direction perpendicular to that of a temperature gradient.

Onoda and colleagues studied a series of compounds named pyrochlore molybdates. Because some members of this family show spin chirality and others do not, they could make direct comparisons.

The comparisons between results on different compounds highlighted the effect of the spin chirality. Specifically, compounds with spin chirality showed an anomalous Nernst effect in a specific temperature range (20-30 K (-253.15- -243.15 °C)), while a compound with no spin chirality showed no effect.

The importance of the result goes beyond the specific case of the class of materials studied. "The observation of this fundamental phenomenon has revealed that a fairly large fictitious magnetic field can be generated in materials by controlling the low-energy degrees of freedom of the spin chirality," says Onoda. "The sign of the spin chirality controls that of the transverse heat/electric current. This is unlike the usual cases of Nernst effects, where [the sign of the transverse current] is exclusively determined by that of the temperature gradient and the applied magnetic field or the magnetization in particular materials." According to the researchers, their study reveals that spin chirality is really a new and promising basic quantity in electron transport phenomena.
Reference

1. Hanasaki, N., Sano, K., Onose, Y., Ohtsuka, T., Iguchi, S., Kézsmárki, I., Miyasaka, S., Onoda, S., Nagaosa, N. & Tokura, Y. Physical Review Letters 100, 106601 (2008). | article |
2. Taguchi, Y., Oohara, Y., Yoshizawa, H., Nagaosa, N. & Tokura, Y. Spin chirality, Berry phase, and anomalous Hall effect in a frustrated ferromagnet. Science 291, 2573-2576 (2001).

####

For more information, please click here

Copyright © Riken

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Iranian Experts Clean Uranium-Contaminated Water by Nano-Particles November 23rd, 2014

Novel Method Found for Connection of Metallic Alloys to Polymers November 23rd, 2014

New research project supports internationalisation in nano-research: Launch of new “Baltic Sea Network” November 22nd, 2014

3rd Iran-Proposed Nano Standard Approved by International Standard Organization November 22nd, 2014

Physics

Researchers discern the shapes of high-order Brownian motions November 17th, 2014

Heat Transfer Sets the Noise Floor for Ultrasensitive Electronics November 11th, 2014

Noise in a microwave amplifier is limited by quantum particles of heat November 10th, 2014

Live Images from the Nano-cosmos: Researchers watch layers of football molecules grow November 5th, 2014

Discoveries

Iranian Experts Clean Uranium-Contaminated Water by Nano-Particles November 23rd, 2014

Novel Method Found for Connection of Metallic Alloys to Polymers November 23rd, 2014

NMTI announces breakthrough solutions for HAMR nanoantenna for next-generation ultra-high density magnetic storage November 21st, 2014

Nano Sorbents Able to Remove Pollutions Caused by Oil Derivatives November 20th, 2014

Announcements

Iranian Experts Clean Uranium-Contaminated Water by Nano-Particles November 23rd, 2014

Novel Method Found for Connection of Metallic Alloys to Polymers November 23rd, 2014

New research project supports internationalisation in nano-research: Launch of new “Baltic Sea Network” November 22nd, 2014

3rd Iran-Proposed Nano Standard Approved by International Standard Organization November 22nd, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More












ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE