Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > Zetasizer Nano helps establish size independence in DNA driven nanoparticle structuring

Abstract:
A research team led by Dr Oleg Gang at the Brookhaven Center for Functional Nanomaterials (CFN) in New York is using the Zetasizer Nano particle characterization system from Malvern Instruments in ground-breaking work that has demonstrated successful DNA-guided formation of ordered 3-D crystalline structures. DNA's natural ability to self-assemble according to pre-programmed genetic codes within its pairing bases makes it the perfect architectural device for construction of novel crystalline structures. The ability to engineer such 3-D structures enables the production of functional materials that take advantage of the unique properties that may exist at the nanoscale - for example, enhanced magnetism, improved catalytic activity, or new optical properties.

Zetasizer Nano helps establish size independence in DNA driven nanoparticle structuring

Malvern, UK | Posted on July 24th, 2008

Dr. Gang and his team have succeeded in building open, DNA stabilized 3D ordered structures and clusters from nanoparticles. This structure will be also able to incorporate additional small molecules, proteins or polymers within a 3D matrix. They achieved this by tuning the balance, between the attractive force provided by complementary outer-shell DNA regions with the repulsive force of non-complementary DNA or inner-shell DNA spacers. The resulting interactions lead to various morphologies of assemblies, including particle organization with crystalline order and regulated clustering, containing from millions to single particles per cluster.

DNA-guided self-assembly of nanoparticles is predominantly controlled by the surface fraction of DNA on each particle, irrespective of particle size. The Dynamic Light Scattering (DLS) kinetic profiles and aggregate size distribution data provided by the Zetasizer Nano, together with information from other techniques, were used in sample analysis. The results demonstrate that any particle size increase resulting from increased average surface coverage of DNA strands is balanced by a loss in entropic interDNA interaction due to an increase in the particle's surface curvature.

Malcolm Connah, Product Manager Nanometrics at Malvern Instruments, is delighted that the Zetasizer Nano is being used in such inspirational research. "The work of Dr Gang and his team lays the foundation for numerous and diverse advances in nanotechnology," he said. "This is an exciting prospect and Malvern is very pleased that the Zetasizer Nano is making such a valuable contribution."

####

About Malvern Instruments Ltd
Malvern Instruments provides a range of complementary materials characterization tools that deliver inter-related measurements reflecting the complexities of particulates and disperse systems, nanomaterials and macromolecules. Analytical instruments from Malvern are used in the characterization of a wide variety of materials, from industrial bulk powders to the latest nanomaterials and delicate macromolecules. A broad portfolio of innovative technologies is combined with intelligent, user-friendly software. These systems deliver industrially relevant data enabling our customers to make the connection between micro (such as particle size) and macro (bulk) material properties (rheology) and chemical composition (chemical imaging).

Particle size distribution, particle shape information, zeta potential, molecular weight, chemical composition, and bulk materials properties can all be determined with instruments from the Malvern range. The company’s laboratory, at-line, on-line and in-line solutions are proven in sectors as diverse as cement production and pharmaceutical drug discovery.

Headquartered in Malvern, UK, Malvern Instruments has subsidiary organizations in all major European markets, North America, China, Korea and Japan, a joint venture in India, a global distributor network and applications laboratories around the world.

For more information, please click here

Contacts:
Trish Appleton
Kapler Communications
Knowledge Centre
Wyboston Lakes
Great North Road,
Wyboston
Bedfordshire
MK44 3BY
UK
T: +44 (0)1480 479280;
F: +44 (0)1480 470343


USA contact:

Marisa Fraser
Malvern Instruments Inc
117 Flanders Road
Westborough
MA 01581-1042
USA
Tel: +1 508 768 6400
Fax: +1 508 768 6403




Please send sales enquiries to:

Alison Vines
Malvern Instruments Ltd
Enigma Business Park
Grovewood Road
Malvern
Worcestershire
WR14 1XZ
UK
Tel: +44 (0) 1684 892456;
Fax: +44 (0) 1684 892789

Copyright © Malvern Instruments Ltd

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Scientists find a way of acquiring graphene-like films from salts to boost nanoelectronics: Physicists use supercomputers to find a way of making 'imitation graphene' from salt July 30th, 2016

Vortex laser offers hope for Moore's Law: The optics advancement may solve an approaching data bottleneck by helping to boost computing power and information transfer rates tenfold July 30th, 2016

New method for making green LEDs enhances their efficiency and brightness July 30th, 2016

A new type of quantum bits July 29th, 2016

Discoveries

Scientists find a way of acquiring graphene-like films from salts to boost nanoelectronics: Physicists use supercomputers to find a way of making 'imitation graphene' from salt July 30th, 2016

Vortex laser offers hope for Moore's Law: The optics advancement may solve an approaching data bottleneck by helping to boost computing power and information transfer rates tenfold July 30th, 2016

New method for making green LEDs enhances their efficiency and brightness July 30th, 2016

A new type of quantum bits July 29th, 2016

Announcements

Scientists find a way of acquiring graphene-like films from salts to boost nanoelectronics: Physicists use supercomputers to find a way of making 'imitation graphene' from salt July 30th, 2016

Vortex laser offers hope for Moore's Law: The optics advancement may solve an approaching data bottleneck by helping to boost computing power and information transfer rates tenfold July 30th, 2016

New method for making green LEDs enhances their efficiency and brightness July 30th, 2016

A new type of quantum bits July 29th, 2016

Tools

Lonely atoms, happily reunited July 29th, 2016

Pixel-array quantum cascade detector paves the way for portable thermal imaging devices: Research team from TU-Wien Center for Micro- and Nanostructures have developed a new 'cooler' sensing instrument thereby increasing energy-efficiency and enhancing mobility for diagnostic tes July 28th, 2016

WSU researchers 'watch' crystal structure change in real time: Breakthrough made possible by new Argonne facility July 27th, 2016

Enhancing molecular imaging with light: New technology platform increases spectroscopic resolution by 4 fold July 27th, 2016

Nanobiotechnology

Scientists change properties of zeolites to improve hemodialysis July 29th, 2016

Starpharma initiates new DEP™ drug delivery program with AstraZeneca July 27th, 2016

Scientists test nanoparticle drug delivery in dogs with osteosarcoma July 26th, 2016

Accurate design of large icosahedral protein nanocages pushes bioengineering boundaries: Scientists used computational methods to build ten large, two-component, co-assembling icosahedral protein complexes the size of small virus coats July 25th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic