Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Artificial Lotus Effect: Carbon nanotubes with nanoscopic paraffin coating form superhydrophobic, self-cleaning surfaces

Abstract:
Never wash your car again? Never clean your windows? These may well become reality if it becomes possible to produce the right coatings—coatings that imitate the self-cleaning effect of the lotus blossom.

A research team led by Ayyappanpillai Ajayaghosh at the National Institute for Interdisciplinary Science and Technology (Trivandrum, India) has made significant progress toward this goal. As they report in the journal Angewandte Chemie, these scientists have successfully produced a superhydrophobic, self-cleaning surface. Their success results from carbon nanotubes having a nanometer-thick paraffin coating with the help of a rigid aromatic molecule called para-phenylenevinylene.

Artificial Lotus Effect: Carbon nanotubes with nanoscopic paraffin coating form superhydrophobic, self-cleaning surfaces

India | Posted on July 23rd, 2008

The lotus plant has given its name to a natural self-cleaning mechanism: The extremely water-repellent (superhydrophobic) surface of its leaves causes drops of water to form spheres, which roll off the leaf, sweeping any dirt away. The lotus leaf is equipped with 3 to 10 µm "bumps" that are in turn coated with a nanoscopic water-repellent coating. The bumpy structure minimizes the area with which the water can come into contact and the water-repellent coating keeps water from getting into the valleys between the bumps. The water cannot coat the leaf and simply rolls off.

The researchers started with carbon nanotubes—long, hollow fibers made of carbon atoms in a honeycomb-like arrangement. Using a self-assembly process, they attached organic molecules to the exterior of the tubes. These molecules consist of a short backbone of aromatic six-membered carbon rings that supports several long hydrocarbon chains. The aromatic rings attach themselves firmly to the honeycomb structure of the nanotubes; the hydrocarbon chains act like a paraffin-like coating. The research team applied a dispersion of these adducts to glass, metal, and mica surfaces. Once dry, the result was a water-repellent coating with stable self-cleaning properties.

Electron microscopic images show that the coating does not have a regular structure like the leaves of the lotus, but does have comparable nanoscale roughness. Water has as much trouble coating these artificial surfaces as the lotus leaf. A tilt angle of 2° is sufficient to cause water droplets to roll off. Like the lotus, any dust is removed from the surface by the water droplets.

####

For more information, please click here

Copyright © Ayyappanpillai Ajayaghosh

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

DNA triggers shape-shifting in hydrogels, opening a new way to make 'soft robots' September 21st, 2017

Physicists develop new recipes for design of fast single-photon gun Physicists develop high-speed single-photon sources for quantum computers of the future September 21st, 2017

GLOBALFOUNDRIES Announces Availability of mmWave and RF/Analog on Leading FDX™ FD-SOI Technology Platform: Technology solution delivers ‘connected intelligence’ to next generation high-volume wireless and IoT applications with lower power and significantly reduced cost September 20th, 2017

GLOBALFOUNDRIES Announces Availability of Embedded MRAM on Leading 22FDX® FD-SOI Platform: Advanced embedded non-volatile memory solution delivers ‘connected intelligence’ by expanding SoC capabilities on the 22nm process node September 20th, 2017

Discoveries

DNA triggers shape-shifting in hydrogels, opening a new way to make 'soft robots' September 21st, 2017

Physicists develop new recipes for design of fast single-photon gun Physicists develop high-speed single-photon sources for quantum computers of the future September 21st, 2017

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

Materials/Metamaterials

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

New quantum phenomena in graphene superlattices September 18th, 2017

New insights into nanocrystal growth in liquid: Understanding process that creates complex crystals important for energy applications September 14th, 2017

Corrosion in real time: UCSB researchers get a nanoscale glimpse of crevice and pitting corrosion as it happens September 14th, 2017

Announcements

DNA triggers shape-shifting in hydrogels, opening a new way to make 'soft robots' September 21st, 2017

Physicists develop new recipes for design of fast single-photon gun Physicists develop high-speed single-photon sources for quantum computers of the future September 21st, 2017

GLOBALFOUNDRIES Introduces New 12nm FinFET Technology for High-Performance Applications September 20th, 2017

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

Automotive/Transportation

GLOBALFOUNDRIES Announces Availability of Embedded MRAM on Leading 22FDX® FD-SOI Platform: Advanced embedded non-volatile memory solution delivers ‘connected intelligence’ by expanding SoC capabilities on the 22nm process node September 20th, 2017

GLOBALFOUNDRIES Introduces New 12nm FinFET Technology for High-Performance Applications September 20th, 2017

More durable, less expensive fuel cells: University of Delaware researchers have developed a new technology that could speed up the commercialization of fuel cell vehicles September 5th, 2017

High-tech electronics made from autumn leaves: New process converts biomass waste into useful electronic devices August 30th, 2017

Home

Rice lab expands palette for color-changing glass: Nanophotonics team creates low-voltage, multicolor, electrochromic glass March 8th, 2017

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

Industrial Nanotech, Inc. Announces Plans to Spin Off New Product Line to Major Paint Compan November 9th, 2016

New flexible material can make any window 'smart' August 23rd, 2016

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project