Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > News > Nanotube 'springboard' weighs bouncing atoms

July 21st, 2008

Nanotube 'springboard' weighs bouncing atoms

Abstract:
A tiny springboard constructed from a carbon nanotube can weigh individual atoms as they fall onto its surface. The device could replace high-resolution mass spectrometers, which tend to destroy the samples they weigh.

Resonators, materials that naturally oscillate strongly at certain frequencies, help to enhance the sound of many musical instruments.

But physicists also take advantage of resonators to calculate tiny masses. When extra mass lands on the surface of a resonator, it alters the frequency of the resonator, which gives physicists a means to calculate the extra mass.

Existing mass sensors of this kind, however, are constructed from relatively dense materials, such as quartz.

When atoms, which generally have a mass under a zeptogram (a trillionth of a billionth of a gram) land on the quartz, they are too small to make any impression on its vibration frequency. To weigh individual atoms, physicists need a resonator of a much lower density.
Hollow tubes

Kenneth Jensen, Kwanpyo Kim and Alex Zettl at the University of California in Berkeley have discovered that carbon nanotubes are perfect for the task.

Because nanotubes are hollow, they have a mass four orders of magnitude lower than specially built micromachined resonators. That brings their mass into the attogram range (a billionth of a billionth of a gram), and means they respond to single atoms.

Source:
technology.newscientist.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A new, tunable device for spintronics: An international team of scientists including physicist Jairo Sinova from the University of Mainz realises a tunable spin-charge converter made of GaAs August 29th, 2014

Nanoscale assembly line August 29th, 2014

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

Discoveries

A new, tunable device for spintronics: An international team of scientists including physicist Jairo Sinova from the University of Mainz realises a tunable spin-charge converter made of GaAs August 29th, 2014

Nanoscale assembly line August 29th, 2014

Copper shines as flexible conductor August 29th, 2014

Novel 'butterfly' molecule could build new sensors, photoenergy conversion devices August 28th, 2014

Announcements

A new, tunable device for spintronics: An international team of scientists including physicist Jairo Sinova from the University of Mainz realises a tunable spin-charge converter made of GaAs August 29th, 2014

Nanoscale assembly line August 29th, 2014

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

Tools

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

Ultra-Low Frequency Vibration Isolation Stabilizes Scanning Tunneling Microscopy at UCLA’s Nano-Research Group August 28th, 2014

Measure Both Elastic and Viscous Properties with AFM Using Asylum Research’s Exclusive AM-FM Viscoelastic Mapping Mode August 28th, 2014

Malvern specialists to deliver inaugural short course on polymer characterization at Interplas 2014 August 27th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE