Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > News > Nanotube 'springboard' weighs bouncing atoms

July 21st, 2008

Nanotube 'springboard' weighs bouncing atoms

Abstract:
A tiny springboard constructed from a carbon nanotube can weigh individual atoms as they fall onto its surface. The device could replace high-resolution mass spectrometers, which tend to destroy the samples they weigh.

Resonators, materials that naturally oscillate strongly at certain frequencies, help to enhance the sound of many musical instruments.

But physicists also take advantage of resonators to calculate tiny masses. When extra mass lands on the surface of a resonator, it alters the frequency of the resonator, which gives physicists a means to calculate the extra mass.

Existing mass sensors of this kind, however, are constructed from relatively dense materials, such as quartz.

When atoms, which generally have a mass under a zeptogram (a trillionth of a billionth of a gram) land on the quartz, they are too small to make any impression on its vibration frequency. To weigh individual atoms, physicists need a resonator of a much lower density.
Hollow tubes

Kenneth Jensen, Kwanpyo Kim and Alex Zettl at the University of California in Berkeley have discovered that carbon nanotubes are perfect for the task.

Because nanotubes are hollow, they have a mass four orders of magnitude lower than specially built micromachined resonators. That brings their mass into the attogram range (a billionth of a billionth of a gram), and means they respond to single atoms.

Source:
technology.newscientist.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Discoveries

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Nanofur for oil spill cleanup: Materials researchers learn from aquatic ferns: Hairy plant leaves are highly oil-absorbing / publication in bioinspiration & biomimetics / video on absorption capacity August 25th, 2016

Unraveling the crystal structure of a -70 Celsius superconductor, a world first: Significant advancement in the realization of room-temperature superconductors August 25th, 2016

Announcements

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Tools

Nanofiber scaffolds demonstrate new features in the behavior of stem and cancer cells August 25th, 2016

50 years after the release of the film 'Fantastic Voyage,' science upstages fiction: Science upstages fiction with nanorobotic agents designed to travel in the human body to treat cancer August 25th, 2016

University of Puerto Rico and NASA back in the news XEI reports August 23rd, 2016

Spider silk: Mother Nature's bio-superlens August 22nd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic