Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > New x-ray microscope reveals the secrets of the nanoworld

Abstract:
A novel super-resolution X-ray microscope developed by a team of researchers from the Paul Scherrer Institut (PSI) and EPFL combines the high penetration power of x-rays with high spatial resolution, making it possible for the first time to shed light on the detailed interior composition of semiconductor devices and cellular structures.

New x-ray microscope reveals the secrets of the nanoworld

Switzerland | Posted on July 21st, 2008



The first super-resolution images from this novel microscope are available in an article published online July 18 in the journal Science.

"Researchers have been working on such super-resolution microscopy concepts for electrons and x-rays for many years," says EPFL Professor and team leader Franz Pfeiffer. "Only the construction of a dedicated multi-million Swiss-franc instrument at PSI's Swiss Light Source allowed us to achieve the stability that is necessary to implement our novel method in practice."

The new instrument uses a Megapixel Pilatus detector (whose big brother will be detecting collisions from CERN's Large Hadron Collider), which has excited the synchrotron community for its ability to count millions of single x-ray photons over a large area. This key feature makes it possible to record detailed diffraction patterns while the sample is raster-scanned through the focal spot of the beam. In contrast, conventional x-ray (or electron) scanning microscopes measure only the total transmitted intensity.

These diffraction data are then treated with an algorithm conceived by the Swiss team. "We developed an image reconstruction algorithm that deals with the several tens of thousands of diffraction images and combines them into one super-resolution x-ray micrograph," explains PSI researcher Pierre Thibault, first author on the publication. "In order to achieve images of the highest precision, the algorithm not only reconstructs the sample but also the exact shape of the light probe resulting from the x-ray beam."

Conventional electron scanning microscopes can provide high-resolution images, but usually only for the surface of the specimen, and the samples must be kept in vacuum. The Swiss team's new super-resolution microscope bypasses these requirements, meaning that scientists will now be able to look deeply into semiconductors or biological samples without altering them. It can be used to non-destructively characterize nanometer defects in buried semiconductor devices and to help improve the production and performance of future semiconductor devices with sub-hundred-nanometer features. A further very promising application of the technique is in high-resolution life science microscopy, where the penetration power of X-rays can be used to investigate embedded cells or sub-cellular structures. Finally, the approach can also be transferred to electron or visible laser light, and help in the design of new and better light and electron microscopes.

Reference:

High-Resolution Scanning X-Ray Diffraction Microscopy, by P. Thibault et al., Science, Vol 321 (2008).

####

About EPFL
EPFL is one of the two Ecoles Polytechniques fédérales in Switzerland. Like its sister institution, ETHZ, it has three missions: education, research and technology transfer at the highest international level. Associated with several specialised research institutes, the two EPFs form the EPF domain, which is directly dependent on the Federal Department of Home Affairs.

EPFL, in its idyllic location on the shores of Lake Geneva, brings together a campus of more than 10,000 people. By its novel structure, the school stimulates collaboration between students, professors, researchers and entrepreneurs. These daily interactions give rise to new and groundbreaking work in science, technology and architecture.

For more information, please click here

Contacts:
EPFL P SMC
CM 2 363 (Centre Midi), Station 10
CH-1015 Lausanne , Switzerland
Tél. 021 693 22 22 -
Fax 021 693 64 00

Copyright © EPFL

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Imaging

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

Observation of left and right at nanoscale with optical force October 6th, 2023

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Tools

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project