Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > DARPA awards research team $1.2M grant to study surface enhanced Raman scattering

Abstract:
The Defense Advanced Research Projects Agency (DARPA) has awarded a $1.2 million grant to an interdisciplinary team of Harvard University researchers to study surface enhanced Raman scattering (SERS) for the first phase of a potential three-year effort.

DARPA awards research team $1.2M grant to study surface enhanced Raman scattering

Cambridge, MA | Posted on July 17th, 2008

If all phases of the development program are completed, researchers could receive up a total of up to $2.9 million in funding.

Ken Crozier, Assistant Professor of Electrical Engineering at the School of Engineering and Applied Sciences (SEAS) will serve as the principal investigator for the grant. His co-investigators include Eric Mazur, Balkanski Professor of Physics and Applied Physics at SEAS and the Department of Physics and Alán Aspuru-Guzik, Assistant Professor of Chemistry and Chemical Biology at the Department of Chemistry and Chemical Biology.

SERS relies upon a fundamental phenomenon in physics called the Raman effect—the change in the frequency of monochromatic light (such as a laser) when it passes through a substance. Properly harnessed, Raman scattering can identify specific molecules by detecting their characteristic spectral fingerprints. Potential applications of SERS include the sensing and identification of a range of materials, including chemical and biological agents, improvised explosive devices, and toxic industrial waste.

"While SERS offers enormous potential for chemical detection and sensing, its practical use has been hampered by the need for improved knowledge of the fundamentals of the enhancement mechanisms," says Crozier.

It turns out that Raman scattering cross sections are very small, about 1012-1014 times smaller than fluorescence cross sections. In the 1970's scientists discovered that by placing molecules on roughened metal surfaces they could achieve significantly larger Raman signals, enabling the detection of molecules. Nevertheless the gain has not been enough to make SERS readily usable in detection devices.

"By applying recent advances in optical antennas, laser nanostructuring, and theoretical chemistry, we aim to elucidate the fundamental mechanisms underlying SERS and demonstrate high-performance SERS substrates that will enable the technology to go to the next stage of development," says Crozier.

In particular, the team will utilize Crozier's recent work on optical antennas, metallic nanostructures that are able to generate intense electric fields, by modelling, fabricating and characterizing SERS optical antenna chips. SERS measurements on these chips will allow precise determination of the effects of optical antenna parameters, such as size, shape and spacing requirements, on SERS enhancement.

Likewise, to fabricate large area SERS substrates, the researchers will employ Mazur's expertise in femtosecond laser-nanostructured (FSLN) semiconductor surfaces, or what is more commonly known as "black silicon." Because not all metallic nanoparticles are equally SERS-active, they will also create a screening process to separate the two.

Finally, by relying on Aspuru-Guzik's expertise in theoretical modeling the team will investigate the interplay between chemical and electromagnetic enhancement and, based upon their findings, develop an integrated electronic structure package in a complex electromagnetic environment.

To help foster the research, Crozier plans to collaborate with two existing Harvard-based centers, the Nanoscale Science and Engineering Center and the Center for Nanoscale Systems, a member of the National Nanotechnology Infrastructure Network.

####

For more information, please click here

Contacts:
Michael Patrick Rutter

617-496-3815

Copyright © Harvard University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Wear-resistant ceramic powder maximises component lifespan in high-stress applications: Innovnano’s nanostructured 3YSZ offers improved tribological performance for manufacturing components September 18th, 2014

IEEE International Electron Devices Meeting To Celebrate 60th Anniversary as The Leading Technical Conference for Advanced Semiconductor Devices September 18th, 2014

FEI Opens New Technology Center in Czech Republic: FEI expands its presence in Brno with the opening of a new, larger facility September 18th, 2014

Biosensors Get a Boost from Graphene Partnership: $5 Million Investment Supports Dozens of Jobs and Development of 300mm Fabrication Process and Wafer Transfer Facility September 18th, 2014

Govt.-Legislation/Regulation/Funding/Policy

Scientists refine formula for nanotube types: Rice University theorists determine factors that give tubes their chiral angles September 17th, 2014

New non-invasive technique could revolutionize the imaging of metastatic cancer September 17th, 2014

Recruiting bacteria to be technology innovation partners: September 17th, 2014

Nanoribbon film keeps glass ice-free: Rice University lab refines deicing film that allows radio frequencies to pass September 16th, 2014

Announcements

Wear-resistant ceramic powder maximises component lifespan in high-stress applications: Innovnano’s nanostructured 3YSZ offers improved tribological performance for manufacturing components September 18th, 2014

IEEE International Electron Devices Meeting To Celebrate 60th Anniversary as The Leading Technical Conference for Advanced Semiconductor Devices September 18th, 2014

FEI Opens New Technology Center in Czech Republic: FEI expands its presence in Brno with the opening of a new, larger facility September 18th, 2014

Biosensors Get a Boost from Graphene Partnership: $5 Million Investment Supports Dozens of Jobs and Development of 300mm Fabrication Process and Wafer Transfer Facility September 18th, 2014

Military

Scientists refine formula for nanotube types: Rice University theorists determine factors that give tubes their chiral angles September 17th, 2014

Nanoribbon film keeps glass ice-free: Rice University lab refines deicing film that allows radio frequencies to pass September 16th, 2014

'Squid skin' metamaterials project yields vivid color display: Rice lab creates RGB color display technology with aluminum nanorods September 15th, 2014

Fonon at Cutting-Edge of 3D Military Printing: Live-Combat Scenarios Could See a Decisive Advantage with 3D Printing September 15th, 2014

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Effective Nanotechnology Innovations to Receive Mustafa Prize September 16th, 2014

‘Small’ transformation yields big changes September 16th, 2014

Elusive Quantum Transformations Found Near Absolute Zero: Brookhaven Lab and Stony Brook University researchers measured the quantum fluctuations behind a novel magnetic material's ultra-cold ferromagnetic phase transition September 15th, 2014

Rice rolls 'neat' nanotube fibers: Rice University researchers' acid-free approach leads to strong conductive carbon threads September 15th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE