Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Argonne researchers win 2 R&D 100 Awards

Researchers at the U.S. Department of Energy's (DOE) Argonne National Laboratory and their industrial partners have won two R&D 100 Awards for innovative fluid sealing and lithium-ion battery technologies.

Argonne researchers win 2 R&D 100 Awards

ARGONNE, IL | Posted on July 17th, 2008

Argonne scientists have been awarded 101 R&D 100 Awards since the awards introduction by R&D Magazine in 1964. Winning a prestigious R&D 100 Award -- dubbed the "Oscars of innovation" by The Chicago Tribune -- provides proof that a product is one of the most innovative ideas of the year, according to R&D Magazine.

"This is yet the latest example of how the Department of Energy and our National Laboratories are continuing to demonstrate world-class leadership in innovation, as we enhance our energy security, national security and economic competiveness," Energy Secretary Samuel W. Bodman said. "On behalf of the Department, I would like to congratulate all of our employees who have earned R&D 100 awards and in particular this year's winners."

"These awards demonstrate the scientific know-how and innovative spirit on the part of Argonne researchers," said Argonne Director Robert Rosner. "I offer my hearty congratulations to our winning scientists."

This year's winners are:

* EnerDel/Argonne High-Power Lithium-Ion Battery for hybrid electric vehicles.
* Ultrananocrystalline Diamond (UNCD) Mechanical Seals, a fluid sealing technology.

EnerDel/Argonne Advanced High-Power Battery for Hybrid Electric Vehicles

The EnerDel/Argonne lithium-ion battery is a highly reliable and extremely safe devise that is lighter in weight, more compact, more powerful and longer lasting than the nickel-metal hydride (Ni-MH) )batteries that are found in today's hybrid electric vehicles (HEV).

The battery is expected to meet the U.S. Advanced Battery Consortium's $500 manufacturing price criterion for a 25-kilowatt battery, which is almost a sixth of the cost to make comparable Ni-MH batteries intended for use in HEVs. It is also less expensive to make than comparable Li-ion batteries. That cost reduction is expected to help make HEVs more competitive in the marketplace and enable consumers to receive an immediate payback in gas-cost savings rather than having to wait seven years for the savings to surpass the premium placed on HEVs.

Additionally, the EnerDel/Argonne battery does not use graphite as the anode material, which been the cause for concerns about the safety other Li-ion battery brands. Instead, Argonne developed an innovative, more stable new form of nano-phase lithium titanate (LTO) to replace the graphite. It also developed a new way of making nano-phased LTO that will allow for easier industrial process, as well as provide a high packing density that can increase the battery's energy density and provide the power needed for vehicle acceleration and regenerative charging of HEVs.

The battery's principal developers are Khalil Amine, an Argonne senior scientist and group leader; Illias Belharouak, an Argonne materials scientist; Zonghai Chen, an Argonne assistant chemist; Taison Tan, EnerDel's research and development manager; Hiroyuki Yumoto, EnerDel's director of research and development; and Naoki Ota, EnerDel president and chief operating officer.

The DOE Office of Energy Efficiency and Renewable Energy's (EERE) FreedomCAR and Vehicle Technologies program provides funding for Argonne battery research.

UNCD Mechanical Seals

UNCD Mechanical Seals are specially-treated pumping-system seals that have their surfaces imparted with the properties of diamond to improve their reliability, useful life and integrity in preventing the escape of pumped fluids into the environment. UNCD is an engineered nanomaterial invented at Argonne and is known for its exceptional smoothness when applied to the bearing surface of a mechanical seal. UNCD is an exceptionally low-friction material, and among its many benefits it saves energy by reducing friction on the sealing surface.

The UNCD Mechanical Seals were jointly developed by a team from Argonne, Advanced Diamond Technologies, Inc., (ADT), Romeoville, Ill., and John Crane Inc., Morton Grove, Ill. The Argonne team included former Argonne process development engineer John Hryn, now senior development associate at Praxair, Inc.; Gregory Krumdick, engineer; Jeffrey Elam, chemist; and Joseph Libera, post-doctoral appointee. The ADT contributors included Charles West, vice president of engineering, James Netzel, director of seals engineering, and John Carlisle, chief technical officer. The John Crane team included Douglas Volden, new products director; Joe Haas, vice president of engineering; and Rick Page, vice president of marketing.

EERE's Industrial Technologies Program provided funding for the development of the UNCD Mechanical Seals.

ADT, an Argonne spin-off based in Romeoville, Ill., secured the rights from Argonne to commercialize the technology in 2004 and has since then actively pursued several applications for it, including mechanical seals. ADT has developed a commercial manufacturing platform for making UNCD Seals in volume with exceptional reproducibility and quality. John Crane, the world's largest manufacturer of seals and associated products, performed exhaustive tests that demonstrated that the UNCD-enhanced seals have a significant tribological advantage that improves the performance capabilities of mechanical seals when compared to conventional mechanical seal face materials.

Interestingly, the UNCD thin film production technology that was developed in 2002 by Argonne and iplas GmbH, near Cologne, Germany, won an R&D 100 Award in 2003. UNCD marked the first-ever affordable diamond film suitable for mass production of a wide range of diamond-based microelectromechanical systems, nanoelectromechanical system devices, biodevices, biosensors and microelectronic circuits. Adjustments in the production process were necessitated to make UNCD suitable for application on mechanical seals.


About DOE/Argonne National Laboratory
Argonne National Laboratory brings the world's brightest scientists and engineers together to find exciting and creative new solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

About EnerDel

EnerDel is owned by Ener1, Inc. (80.5%) and Delphi Corporation (19.5%). EnerDel has a production facility in Indianapolis, Ind. EnerDel currently employs approximately 65 highly experienced engineers and technicians involved in the battery development of both cells and systems.

About Advanced Diamond Technologies

Advance Diamond Technologies, Inc. was formed in December 2003 to commercialize the UNCD technology developed by Argonne National Laboratory. ADT is the licensee to the Argonne portfolio of application and process patents for using, synthesizing and micromachining UNCD films.

For more information, please click here

Angela Hardin


Copyright © DOE/Argonne National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Thin films

New prospects for universal memory -- high speed of RAM and the capacity of flash: Thin films created at MIPT could be the basis for future development of ReRAM June 17th, 2017

Discovery of new transparent thin film material could improve electronics and solar cells: Conductivity is highest-ever for thin film oxide semiconductor material May 6th, 2017

MIT Energy Initiative awards 10 seed fund grants for early-stage energy research May 4th, 2017

Nanomechanics, Inc. Unveils New Product at ICMCTF Show April 25th: Nanoindentation experts will launch the new Gemini that measures the interaction of two objects that are sliding across each other Ė not merely making contact April 21st, 2017


Leti Scientists Participating in Sessions on Med Tech, Automotive Technologies, MEMS, Si-photonics and Lithography at SEMICON Europa: Teams also Will Demonstrate Technology Advances in Telecom, Data Fusion, Energy, Silicon Photonics and 3D Integration October 18th, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Nano-photonics meets nano-mechanics: Controlling on-chip nano-optics by graphene nano-opto-mechanics January 22nd, 2016

Mechanical quanta see the light January 20th, 2016


Smart multi-layered magnetic material acts as an electric switch: New study reveals characteristic of islands of magnetic metals between vacuum gaps, displaying tunnelling electric current March 1st, 2017

Engineers shrink microscope to dime-sized device February 17th, 2017

Leti Coordinating Project to Adapt Obstacle-Detection Technology Used in Autonomous Cars for Portable and Wearable Systems: INSPEX to Combine Knowhow of Nine European Organizations to Create Portable and Wearable Spatial-Exploration Systems February 2nd, 2017

Manufacturing platform makes intricate biocompatible micromachines January 7th, 2017


Letiís Autonomous-Vehicle System Embedded in Infineonís AURIX Platform: Letiís Low-Power, Multi-Sensor System that Transforms Distance Data into Clear Information About the Driving Environment Will Be Demonstrated at ITS Meeting in Strasbourg, June 19-22 June 20th, 2017

New diode features optically controlled capacitance: Israeli researchers have developed a new optically tunable capacitor with embedded metal nanoparticles, creating a metal-insulator-semiconductor diode that is tunable by illumination. June 8th, 2017

Graphene and quantum dots put in motion a CMOS-integrated camera that can see the invisible May 29th, 2017

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017


U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017


Letiís Autonomous-Vehicle System Embedded in Infineonís AURIX Platform: Letiís Low-Power, Multi-Sensor System that Transforms Distance Data into Clear Information About the Driving Environment Will Be Demonstrated at ITS Meeting in Strasbourg, June 19-22 June 20th, 2017

Development of low-dimensional nanomaterials could revolutionize future technologies June 15th, 2017

GLOBALFOUNDRIES Launches 7nm ASIC Platform for Data Center, Machine Learning, and 5G Networks FX-7TM offering leverages the companyís 7nm: FinFET process to deliver best in class IP and Solutions June 13th, 2017

Leti Announces Two New Tools for Improving Transportation Comfort, Safety and Efficiency: Wearable Device Measures Stress Responses for Travelers, Pilots and Truck Drivers, While Smartphone App Provides Transit Agencies Broad Data on Transport Modes June 13th, 2017

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Smart materials used in ultrasound behave similar to water, Penn chemists report June 16th, 2017

X-ray Study Reveals Way to Control Molecular Vibrations that Transmit Heat: Findings open new pathway for "tuning" materials to ease or insulate against the flow of heat, sound, and other forms of energy June 7th, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Mussels add muscle to biocompatible fibers: Rice University chemists develop hydrogel strings using compound found in sea creatures June 9th, 2017

The 2017 Winners for Generation Nano June 8th, 2017

Controlling 3-D behavior of biological cells using laser holographic techniques May 26th, 2017

The latest news from around the world, FREE

  Premium Products
Only the news you want to read!
 Learn More
University Technology Transfer & Patents
 Learn More
Full-service, expert consulting
 Learn More

Nanotechnology Now Featured Books


The Hunger Project