Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Argonne researchers win 2 R&D 100 Awards

Abstract:
Researchers at the U.S. Department of Energy's (DOE) Argonne National Laboratory and their industrial partners have won two R&D 100 Awards for innovative fluid sealing and lithium-ion battery technologies.

Argonne researchers win 2 R&D 100 Awards

ARGONNE, IL | Posted on July 17th, 2008

Argonne scientists have been awarded 101 R&D 100 Awards since the awards introduction by R&D Magazine in 1964. Winning a prestigious R&D 100 Award -- dubbed the "Oscars of innovation" by The Chicago Tribune -- provides proof that a product is one of the most innovative ideas of the year, according to R&D Magazine.

"This is yet the latest example of how the Department of Energy and our National Laboratories are continuing to demonstrate world-class leadership in innovation, as we enhance our energy security, national security and economic competiveness," Energy Secretary Samuel W. Bodman said. "On behalf of the Department, I would like to congratulate all of our employees who have earned R&D 100 awards and in particular this year's winners."

"These awards demonstrate the scientific know-how and innovative spirit on the part of Argonne researchers," said Argonne Director Robert Rosner. "I offer my hearty congratulations to our winning scientists."

This year's winners are:

* EnerDel/Argonne High-Power Lithium-Ion Battery for hybrid electric vehicles.
* Ultrananocrystalline Diamond (UNCD) Mechanical Seals, a fluid sealing technology.

EnerDel/Argonne Advanced High-Power Battery for Hybrid Electric Vehicles

The EnerDel/Argonne lithium-ion battery is a highly reliable and extremely safe devise that is lighter in weight, more compact, more powerful and longer lasting than the nickel-metal hydride (Ni-MH) )batteries that are found in today's hybrid electric vehicles (HEV).

The battery is expected to meet the U.S. Advanced Battery Consortium's $500 manufacturing price criterion for a 25-kilowatt battery, which is almost a sixth of the cost to make comparable Ni-MH batteries intended for use in HEVs. It is also less expensive to make than comparable Li-ion batteries. That cost reduction is expected to help make HEVs more competitive in the marketplace and enable consumers to receive an immediate payback in gas-cost savings rather than having to wait seven years for the savings to surpass the premium placed on HEVs.

Additionally, the EnerDel/Argonne battery does not use graphite as the anode material, which been the cause for concerns about the safety other Li-ion battery brands. Instead, Argonne developed an innovative, more stable new form of nano-phase lithium titanate (LTO) to replace the graphite. It also developed a new way of making nano-phased LTO that will allow for easier industrial process, as well as provide a high packing density that can increase the battery's energy density and provide the power needed for vehicle acceleration and regenerative charging of HEVs.

The battery's principal developers are Khalil Amine, an Argonne senior scientist and group leader; Illias Belharouak, an Argonne materials scientist; Zonghai Chen, an Argonne assistant chemist; Taison Tan, EnerDel's research and development manager; Hiroyuki Yumoto, EnerDel's director of research and development; and Naoki Ota, EnerDel president and chief operating officer.

The DOE Office of Energy Efficiency and Renewable Energy's (EERE) FreedomCAR and Vehicle Technologies program provides funding for Argonne battery research.

UNCD Mechanical Seals

UNCD Mechanical Seals are specially-treated pumping-system seals that have their surfaces imparted with the properties of diamond to improve their reliability, useful life and integrity in preventing the escape of pumped fluids into the environment. UNCD is an engineered nanomaterial invented at Argonne and is known for its exceptional smoothness when applied to the bearing surface of a mechanical seal. UNCD is an exceptionally low-friction material, and among its many benefits it saves energy by reducing friction on the sealing surface.

The UNCD Mechanical Seals were jointly developed by a team from Argonne, Advanced Diamond Technologies, Inc., (ADT), Romeoville, Ill., and John Crane Inc., Morton Grove, Ill. The Argonne team included former Argonne process development engineer John Hryn, now senior development associate at Praxair, Inc.; Gregory Krumdick, engineer; Jeffrey Elam, chemist; and Joseph Libera, post-doctoral appointee. The ADT contributors included Charles West, vice president of engineering, James Netzel, director of seals engineering, and John Carlisle, chief technical officer. The John Crane team included Douglas Volden, new products director; Joe Haas, vice president of engineering; and Rick Page, vice president of marketing.

EERE's Industrial Technologies Program provided funding for the development of the UNCD Mechanical Seals.

ADT, an Argonne spin-off based in Romeoville, Ill., secured the rights from Argonne to commercialize the technology in 2004 and has since then actively pursued several applications for it, including mechanical seals. ADT has developed a commercial manufacturing platform for making UNCD Seals in volume with exceptional reproducibility and quality. John Crane, the world's largest manufacturer of seals and associated products, performed exhaustive tests that demonstrated that the UNCD-enhanced seals have a significant tribological advantage that improves the performance capabilities of mechanical seals when compared to conventional mechanical seal face materials.

Interestingly, the UNCD thin film production technology that was developed in 2002 by Argonne and iplas GmbH, near Cologne, Germany, won an R&D 100 Award in 2003. UNCD marked the first-ever affordable diamond film suitable for mass production of a wide range of diamond-based microelectromechanical systems, nanoelectromechanical system devices, biodevices, biosensors and microelectronic circuits. Adjustments in the production process were necessitated to make UNCD suitable for application on mechanical seals.

####

About DOE/Argonne National Laboratory
Argonne National Laboratory brings the world's brightest scientists and engineers together to find exciting and creative new solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

About EnerDel

EnerDel is owned by Ener1, Inc. (80.5%) and Delphi Corporation (19.5%). EnerDel has a production facility in Indianapolis, Ind. EnerDel currently employs approximately 65 highly experienced engineers and technicians involved in the battery development of both cells and systems.

About Advanced Diamond Technologies

Advance Diamond Technologies, Inc. was formed in December 2003 to commercialize the UNCD technology developed by Argonne National Laboratory. ADT is the licensee to the Argonne portfolio of application and process patents for using, synthesizing and micromachining UNCD films.

For more information, please click here

Contacts:
Angela Hardin

630-252-5501

Copyright © DOE/Argonne National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Thin films

Advancing thin film research with nanostructured AZO: Innovnano’s unique and cost-effective AZO sputtering targets for the production of transparent conducting oxides October 23rd, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

NIST offers electronics industry 2 ways to snoop on self-organizing molecules October 22nd, 2014

Nanocoatings Market By Product Is Expected To Reach USD 8.17 Billion By 2020: Grand View Research, Inc. October 15th, 2014

NEMS

Carbyne morphs when stretched: Rice University calculations show carbon-atom chain would go metal to semiconductor July 21st, 2014

LetiDays Grenoble to Present Multiple Perspectives on Development, Challenges and Markets for the IoT April 14th, 2014

Columbia engineers make world's smallest FM radio transmitter: Team demonstrates new application of graphene using positive feedback November 18th, 2013

Revisiting quantum effects in MEMS: New calculations shows that the influence of quantum effects on the operating conditions of nanodevices has, until now, been overestimated November 15th, 2013

MEMS

MEMS & Sensors Technology Showcase: Finalists Announced for MEMS Executive Congress US 2014 October 23rd, 2014

IEEE International Electron Devices Meeting To Celebrate 60th Anniversary as The Leading Technical Conference for Advanced Semiconductor Devices September 18th, 2014

Carbyne morphs when stretched: Rice University calculations show carbon-atom chain would go metal to semiconductor July 21st, 2014

Leti to Present Technological Platforms Targeting Industry’s Needs for the Future at Semicon West Workshop: Presentation at STS Session to Focus on Leti Advanced Lithography Programs for 1x Nodes and on Silicon Photonics at TechXPot June 25th, 2014

Sensors

MEMS & Sensors Technology Showcase: Finalists Announced for MEMS Executive Congress US 2014 October 23rd, 2014

Journal Nanotechnology Progress International (JONPI), 2014, Volume 5, Issue 1, pp 1-24 October 22nd, 2014

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Graphenea opens US branch October 16th, 2014

Announcements

Iran to Hold 3rd Int'l Engineering Materials, Metallurgy Conference October 25th, 2014

Haydale Secures Exclusive Development and Supply Agreement with Tantec A/S: New reactors to be built and commissioned by Tantec A/S represent another step forward towards the commercialisation of graphene October 24th, 2014

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

Automotive/Transportation

Production of Anticorrosive Chromate Nanocoatings in Iran September 27th, 2014

Teijin Aramid’s carbon nanotube fibers awarded with Paul Schlack prize: New generation super fibers bring wave of innovations to fiber market September 25th, 2014

Next-Gen Luxury RV From Global Caravan Technologies Will Offer MagicView Roof and Windshield Using SPD-SmartGlass Technology From Research Frontiers: Recreational Vehicle Manufacturer Global Caravan Technologies (GCT) Features 28 Square Feet of MagicView™ SPD-SmartGlass September 17th, 2014

Toward making lithium-sulfur batteries a commercial reality for a bigger energy punch September 17th, 2014

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

Graphenea opens US branch October 16th, 2014

NTU develops ultra-fast charging batteries that last 20 years October 14th, 2014

Electrically conductive plastics promising for batteries, solar cells October 10th, 2014

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

QD Vision Wins Prestigious Presidential Green Chemistry Challenge Award from the U.S. Environmental Protection Agency October 16th, 2014

Beyond LEDs: Brighter, new energy-saving flat panel lights based on carbon nanotubes - Planar light source using a phosphor screen with highly crystalline single-walled carbon nanotubes (SWCNTs) as field emitters demonstrates its potential for energy-efficient lighting device October 14th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE