Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Quantum Rod System May Safely 'Sneak' Drugs, Diagnostics into Brain

This confocal microscope image of a blood-brain barrier model shows quantum rods bioconjugated with transferrin; the findings could lead to better treatment of neuronal disorders.
This confocal microscope image of a blood-brain barrier model shows quantum rods bioconjugated with transferrin; the findings could lead to better treatment of neuronal disorders.

Abstract:
System also can serve as "test kit" for evaluating new transporter molecules

Quantum Rod System May Safely 'Sneak' Drugs, Diagnostics into Brain

Buffalo, NY | Posted on July 16th, 2008

A unique nanoparticle system developed by University at Buffalo scientists takes advantage of the versatility of bioconjugated quantum rods to ferry novel diagnostic and therapeutic agents across the blood-brain barrier, according to recent in vitro findings.

Described in a paper published in Bioconjugate Chemistry, the system uses the rod-shaped semiconductor nanoparticles that are bioconjugated, or coupled, with biomolecules capable of crossing the blood-brain barrier.

The blood-brain barrier acts as a physiological "checkpoint" that selectively allows certain molecules in blood circulation to enter the brain. While it naturally evolved in order to protect the brain from invasion of various circulating toxins and other harmful molecules, the blood-brain barrier also serves as a major impediment to the brain-specific delivery of various diagnostic/therapeutic molecules needed for combating various neuronal disorders.

The quantum rod system the UB researchers developed has the potential to simultaneously and non-invasively deliver diagnostic and therapeutic agents targeted to a wide variety of neurological diseases as well as obesity and drug addiction, according to Paras N. Prasad, Ph.D., executive director of the UB Institute for Lasers, Photonics and Biophotonics and SUNY Distinguished Professor in the Department of Chemistry, who led the UB team.

"These brain-specific nanoparticle systems represent a significant improvement over commonly used, highly-invasive methods of delivering active molecules into the brain, most of which rely on direct injection," he said.

The UB team, together with colleagues from Buffalo General Hospital, has developed a simple method for linking quantum rods to the iron-transporting protein, transferrin and other biomolecules, which routinely pass through the blood-brain barrier.

"Our findings unfold a new dimension in blood-brain barrier transport using inorganic nanoparticles, which are structurally robust and demonstrate the potential to transport multiple agents across this physiological barrier," said Indrajit Roy, Ph.D., deputy director for biophotonics at the UB institute. "This system allows the nanoparticles and the multiple therapeutic and imaging agents they carry to 'sneak' safely across the barrier and into the brain. It's a Trojan horse approach."

The functionalized quantum rods proved to have very low toxicity, according to Ken-Tye Yong, Ph.D., postdoctoral research associate in the UB institute, providing additional evidence that when linked to drug molecules, they could make very suitable treatment probes for diseases of the brain.

The new nanoparticle platform could provide scientists with a kind of window on the blood-brain barrier, enhancing what they know about it and allowing them to view non-invasively in real-time how imaging and therapeutic agents affect the brain.

The quantum rod system also serves as the basis of a blood-brain barrier-crossing test kit the UB researchers are developing.

The test kit would enable scientists to competitively evaluate which molecules would most efficiently transport diagnostic and therapeutic agents across the blood-brain barrier by exploiting the ability of quantum rods to emit light in different colors, depending on their size.

The research is closely aligned with the strategic strength in integrated nanostructured systems identified in the UB 2020 strategic planning process.

In addition to Prasad, Roy and Yong, co-authors included Gaixia Xu, Ph.D., former postdoctoral associate, and Hong Ding, Ph.D., postdoctoral associate, both of the UB Institute for Lasers, Photonics and Biophotonics; Supriya D. Mahajan, Ph.D., research assistant professor in the Department of Medicine in the UB School of Medicine and Biomedical Sciences and at Buffalo General Hospital, and Stanley A. Schwartz, M.D., Ph.D., UB professor of Medicine, Pediatrics and Microbiology and director of the Division of Allergy, Immunology and Rheumatology in the Department of Medicine at Buffalo General Hospital.

This research was supported by the John R. Oishei Foundation and by UB's New York State Center of Excellence in Bioinformatics and Life Sciences.

####

About University at Buffalo
The University at Buffalo is a premier research-intensive public university, a flagship institution in the State University of New York system and its largest and most comprehensive campus. UB's more than 28,000 students pursue their academic interests through more than 300 undergraduate, graduate and professional degree programs. Founded in 1846, the University at Buffalo is a member of the Association of American Universities.

For more information, please click here

Contacts:
Ellen Goldbaum

716-645-5000 ext 1415

Copyright © University at Buffalo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Mass spectrometers with optimised hydrogen pumping March 1st, 2015

Imec Demonstrates Compact Wavelength-Division Multiplexing CMOS Silicon Photonics Transceiver March 1st, 2015

onic Present breakthrough in CMOS-based Transceivers for mm-Wave Radar Systems March 1st, 2015

Graphene Shows Promise In Eradication Of Stem Cancer Cells March 1st, 2015

Nanomedicine

Graphene Shows Promise In Eradication Of Stem Cancer Cells March 1st, 2015

Novel Method to Determine Optical Purity of Drug Components March 1st, 2015

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

Discoveries

Imec, Holst Centre and Renesas Present World’s Lowest Power 2.4GHz Radio Chip for Bluetooth Low Energy March 1st, 2015

Imec, Murata, and Huawei Introduce Breakthrough Solution for TX-to-RX Isolation in Reconfigurable, Multiband Front-End Modules for Mobile Phones: Electrical-Balance Duplexers Pave the Way to Integrated Solution for TX-to-RX Isolation March 1st, 2015

Imec Demonstrates Compact Wavelength-Division Multiplexing CMOS Silicon Photonics Transceiver March 1st, 2015

Graphene Shows Promise In Eradication Of Stem Cancer Cells March 1st, 2015

Announcements

Imec, Murata, and Huawei Introduce Breakthrough Solution for TX-to-RX Isolation in Reconfigurable, Multiband Front-End Modules for Mobile Phones: Electrical-Balance Duplexers Pave the Way to Integrated Solution for TX-to-RX Isolation March 1st, 2015

Imec Demonstrates Compact Wavelength-Division Multiplexing CMOS Silicon Photonics Transceiver March 1st, 2015

onic Present breakthrough in CMOS-based Transceivers for mm-Wave Radar Systems March 1st, 2015

Graphene Shows Promise In Eradication Of Stem Cancer Cells March 1st, 2015

Quantum Dots/Rods

Optical nanoantennas set the stage for a NEMS lab-on-a-chip revolution February 24th, 2015

QD Vision Named Edison Award Finalist for Innovative Color IQ™ Quantum Dot Technology February 23rd, 2015

Ocean Optics Names Winner of 2015 Young Investigator Award: Cash prize and grant awarded during SPIE BiOS/Photonics West 2015 conference February 21st, 2015

Rediscovering spontaneous light emission: Berkeley researchers develop optical antenna for LEDs February 3rd, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE