Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > ASML Extends Immersion to the Limit of Single-Patterning Lithography

Abstract:
New TWINSCAN XT:1950i offers 25 percent performance improvement and enables world-leading sub 40 nm volume chip imaging

ASML Extends Immersion to the Limit of Single-Patterning Lithography

VELDHOVEN, Netherlands | Posted on July 15th, 2008

ASML Holding NV (ASML) announces today its newest TWINSCANTM XT:1950i lithography system using a 1.35 NA lens - increasing the performance of its immersion lithography systems by 25%. The system offers improved overlay, resolution and throughput, to enable high-volume manufacturing of more powerful 38 nanometer (nm) memory and ‘32' nm logic semiconductors.

The XT:1950i is the industry's first single-exposure immersion lithography system for high volume manufacturing at 38 nanometers — a shrink that makes 10% more wafer area available for chips over the XT:1900i. In addition the XT:1950i offers an unmatched productivity increase — close to 15% — with its high throughput of 148 wafers per hour. With improvements in imaging, overlay, stability and control, the XT:1950i is the world's most advanced volume lithography system, enabling the highest resolution and throughput for maximum value of ownership.

"High-throughput immersion lithography is required for the semiconductor industry to keep up with Moore's law in a timely and cost effective manner," stated Martin van den Brink, ASML's executive vice president of marketing and technology. "Shrink is needed to boost memory capacities and multimedia applications for DRAM and Flash, and drive advanced integration and improved functionality for logic applications such as computer chips and digital signal processors for portable devices."

ASML also announces that it will introduce a comprehensive package of upgrades to increase the performance of its existing immersion systems TWINSCAN XT:1700i and XT:1900i. These upgrade packages, available from Q1 2009, will improve overlay by 14 and 17% and productivity by 4 and 7% respectively. The integrated product launch helps semiconductor manufacturers to optimize their existing investments, and increase the value and competitive edge of their products.

TWINSCAN XT:1950i Technology Advances

ASML's TWINSCAN lithography systems continuously improve imaging, productivity, overlay and critical dimension uniformity (CDU) control because they are developed on a common platform with a modular approach, allowing new systems to inherit and build upon predecessor attributes. The XT:1950i offers the following improvements over the XT:1900i:

* 30% tighter overlay accuracy specification via improved stage control. This is important for chipmakers to improve the quality and value of chips on a wafer.
* Overall productivity increase of nearly 15% due to new immersion techniques and enhanced stages.
* Resolution improvement of 5% (from 40 to 38 nm), resulting in a 10% area increase, for higher yield and/or increased functionality such as higher density and capacity memory chips.
* The TWINSCAN XT:1950i provides a 3.5 nm overlay capability and will support low k1 applications.

ASML expects to begin shipping the XT:1950i by Q1 2009. ASML will partner closely with leading semiconductor companies, enabling them to begin early process development.

Immersion Lithography Rapid Market Growth led by ASML

Immersion lithography systems transfer patterns onto silicon wafers by projecting laser-generated light through highly purified water between the lens and the wafer, enabling chipmakers to print smaller features while using light with the same wavelength.

ArF immersion (ArFi) technology has become the de facto standard for enabling chip production at 55 nm and below. According to Gartner's Q208 stepper unit forecast, the 193 nm ArFi system unit growth was over 75% in 2007, with a further 60% growth expected by the end of 2008 (Source: Stepper Market Forecast, Worldwide, Q208, Gartner, Inc.).

ASML, the worldwide leader in immersion lithography, was the first manufacturer to introduce immersion lithography, shipping its first TWINSCAN immersion system in 2004. ASML immersion system shipments continue to ramp up rapidly. By mid-2008, more than 100 immersion systems were shipped to 20 different customers. ASML immersion systems have imaged nearly 20 million wafers to date, resulting in hundreds of millions of electronic devices powered by immersion-manufactured chips.

####

About ASML Holding NV
ASML is the world's leading provider of lithography systems for the semiconductor industry, manufacturing complex machines that are critical to the production of integrated circuits or chips. Headquartered in Veldhoven, the Netherlands, ASML is traded on Euronext Amsterdam and NASDAQ under the symbol ASML. ASML has more than 6,750 employees, serving chip manufacturers in more than 60 locations in 16 countries.

For more information, please click here

Contacts:
ASML Holding NV
Media Relations:
Corporate Communications
Veldhoven, the Netherlands
Lucas van Grinsven
+31 40 268 3949
or
Investor Relations:
Tempe, Arizona, USA
Craig DeYoung
+1 480 383 4005
or
Veldhoven, the Netherlands
Franki D’Hoore
+31 40 268 6494

Copyright © Business Wire 2008

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Industrial Nanotech, Inc. to Publish PCAOB Audited Financials July 31st, 2014

Nanostructured metal-oxide catalyst efficiently converts CO2 to methanol: Highly reactive sites at interface of 2 nanoscale components could help overcome hurdle of using CO2 as a starting point in producing useful products July 31st, 2014

Carnegie Mellon Chemists Create Nanofibers Using Unprecedented New Method July 31st, 2014

Pressure probing potential photoelectronic manufacturing compound July 31st, 2014

Imaging

Nanostructured metal-oxide catalyst efficiently converts CO2 to methanol: Highly reactive sites at interface of 2 nanoscale components could help overcome hurdle of using CO2 as a starting point in producing useful products July 31st, 2014

Carnegie Mellon Chemists Create Nanofibers Using Unprecedented New Method July 31st, 2014

Chip Technology

Pressure probing potential photoelectronic manufacturing compound July 31st, 2014

Nanometrics Reports Second Quarter 2014 Financial Results July 30th, 2014

A*STAR and industry form S$200M semiconductor R&D July 25th, 2014

A Crystal Wedding in the Nanocosmos July 23rd, 2014

Announcements

Industrial Nanotech, Inc. to Publish PCAOB Audited Financials July 31st, 2014

Nanostructured metal-oxide catalyst efficiently converts CO2 to methanol: Highly reactive sites at interface of 2 nanoscale components could help overcome hurdle of using CO2 as a starting point in producing useful products July 31st, 2014

Carnegie Mellon Chemists Create Nanofibers Using Unprecedented New Method July 31st, 2014

Pressure probing potential photoelectronic manufacturing compound July 31st, 2014

Tools

Carnegie Mellon Chemists Create Nanofibers Using Unprecedented New Method July 31st, 2014

New imaging agent provides better picture of the gut July 30th, 2014

Nanometrics Reports Second Quarter 2014 Financial Results July 30th, 2014

New Objective Focusing Nanopositioner from nPoint July 30th, 2014

Printing/Lithography/Inkjet/Inks

East China University of Science and Technology Purchases Nanonex Advanced Nanoimprint Tool NX-B200 July 30th, 2014

Martini Tech Inc. becomes the exclusive distributor for Yoshioka Seiko Co. porous chucks for Europe and North America July 20th, 2014

University of Illinois researchers demonstrate novel, tunable nanoantennas July 14th, 2014

Haydale Announces Collaboration Agreement with Swansea University’s Welsh Centre for Printing and Coatings (WCPC) July 12th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE