Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Controlling the Size of Nanoclusters: First Step in Making New Catalysts

Michael White and Melissa Patterson review an image of a molybdenum sulfide nanocluster.
Michael White and Melissa Patterson review an image of a molybdenum sulfide nanocluster.

Abstract:
Researchers from the U.S. Department of Energy's (DOE) Brookhaven National Laboratory and Stony Brook University have developed a new instrument that allows them to control the size of nanoclusters — groups of 10 to 100 atoms — with atomic precision. They created a model nanocatalyst of molybdenum sulfide, the first step in developing the next generation of materials to be used in hydrodesulfurization, a process that removes sulfur from natural gas and petroleum products to reduce pollution.

Controlling the Size of Nanoclusters: First Step in Making New Catalysts

UPTON, NY | Posted on July 14th, 2008

As reported in the July 9, 2008 online edition of the Journal of Physical Chemistry C, the scientists made size-selected molybdenum sulfide nanoclusters as gaseous ions, and then gently deposited the clusters on a gold surface. The nanoclusters interact weakly with the gold support and therefore remain intact.

"With this new instrument, we can control how many and what type of atoms are in a nanocluster," said Brookhaven chemist Michael White, the principal author of the paper. "This knowledge enables us to make nanoclusters with predetermined size, structure and chemical composition, all which are important for the design of new catalysts."

Currently, molybdenum sulfide nanoparticles are used for hydrodesulfurization and other chemical processes, but it is not known what size is most active or how the reactions occur on small particles. The ability to make model nanocatalysts containing molybdenum sulfide particles of variable size and chemical makeup will allow White and coworkers to understand how current catalysts work and help design the next generation of catalysts.

In the current research, the scientists explored the chemical reactivity of a very stable or "magic" cluster of four atoms of molybdenum and six atoms of sulfur deposited on a gold surface. This small nanocluster is thought to be prototypical of active catalyst particles because all the molybdenum metal atoms are exposed and therefore can react with other molecules. Exploring larger and more reactive nanoclusters will be the next step.

"This was a study to test the capabilities of the newly built instrument," White said. "Now we can do further studies with different nanoclusters to find those that are most reactive and therefore best suited as models for making the most efficient nanocatalysts."

Melissa Patterson, a W. Burghardt Turner Fellow at Stony Brook University and a coauthor of the paper, will give a talk on related work titled "Size-selected deposition of transition metal sulfides: Insights toward model systems in catalysis" at the American Chemical Society's national meeting in Philadelphia on August 19, 2008, at 1:20 p.m.

This research was funded by DOE's Office of Science, Basic Energy Sciences, through the Nanoscale Science, Engineering and Technology initiative.

####

About Brookhaven National Laboratory
One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE’s Office of Science by Brookhaven Science Associates, a limited-liability company founded by Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit, applied science and technology organization.

For more information, please click here

Contacts:
Diane Greenberg
(631) 344-2347

or
Mona S. Rowe
(631) 344-5056

Copyright © Brookhaven National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Michael White's work is described in the June 2008 edition of 'Take 5', Brookhaven's monthly video magazine. Real Player is required to view this video. > PLAY video.

Related News Press

News and information

Stiffness matters February 23rd, 2018

Developing reliable quantum computers February 22nd, 2018

Imaging individual flexible DNA 'building blocks' in 3-D: Berkeley Lab researchers generate first images of 129 DNA structures February 22nd, 2018

'Memtransistor' brings world closer to brain-like computing: Combined memristor and transistor can process information and store memory with one device February 22nd, 2018

Videos/Movies

Graphene on toast, anyone? Rice University scientists create patterned graphene onto food, paper, cloth, cardboard February 13th, 2018

Fast-spinning spheres show nanoscale systems' secrets: Rice University lab demonstrates energetic properties of colloids in spinning magnetic field February 7th, 2018

New research yields super-strong aluminum alloy January 25th, 2018

Piecework at the nano assembly line: Electric fields drive nano-motors a 100,000 times faster than previous methods January 22nd, 2018

Govt.-Legislation/Regulation/Funding/Policy

Imaging individual flexible DNA 'building blocks' in 3-D: Berkeley Lab researchers generate first images of 129 DNA structures February 22nd, 2018

'Memtransistor' brings world closer to brain-like computing: Combined memristor and transistor can process information and store memory with one device February 22nd, 2018

Arrowhead Receives Regulatory Clearance to Begin Phase 1 Study of ARO-AAT for Treatment of Alpha-1 Liver Disease February 22nd, 2018

Computers aid discovery of new, inexpensive material to make LEDs with high color quality February 20th, 2018

Discoveries

Histology in 3-D: New staining method enables Nano-CT imaging of tissue samples February 22nd, 2018

Developing reliable quantum computers February 22nd, 2018

Imaging individual flexible DNA 'building blocks' in 3-D: Berkeley Lab researchers generate first images of 129 DNA structures February 22nd, 2018

'Memtransistor' brings world closer to brain-like computing: Combined memristor and transistor can process information and store memory with one device February 22nd, 2018

Announcements

Stiffness matters February 23rd, 2018

Developing reliable quantum computers February 22nd, 2018

Imaging individual flexible DNA 'building blocks' in 3-D: Berkeley Lab researchers generate first images of 129 DNA structures February 22nd, 2018

'Memtransistor' brings world closer to brain-like computing: Combined memristor and transistor can process information and store memory with one device February 22nd, 2018

Environment

Ultra-efficient removal of carbon monoxide using gold nanoparticles on a molecular support: New method and mechanism for state-of-the-art gas purification February 9th, 2018

New filters could enable manufacturers to perform highly-selective chemical separation January 23rd, 2018

Rice U.'s one-step catalyst turns nitrates into water and air: NSF-funded NEWT Center aims for catalytic converter for nitrate-polluted water January 5th, 2018

'Quantum material' has shark-like ability to detect small electrical signals December 20th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project