Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > UCR Professor Part of a Team Developing an Electronic Nose for Quick Detection of Explosives

Yushan Yan
Yushan Yan

Abstract:
The sensor will be useful in airports and other high-risk areas.

UCR Professor Part of a Team Developing an Electronic Nose for Quick Detection of Explosives

RIVERSIDE, CA | Posted on July 7th, 2008

Chemical and Environmental Engineering Professor Yushan Yan is part of a multidisciplinary team working to develop an "electronic nose" - an ultra-sensitive sensor system that is designed to quickly detect trace quantities of explosives in high-traffic high-risk security areas, such as airports.

Currently, many explosives are found by dogs and other animals with highly sensitive olfactory senses. Developing an efficient hand-held device has been a challenge because volatile explosive vapors found in large open spaces are present at low concentrations that range from parts per billion or even parts per trillion.

Yan and his team at UCR are working to develop an ultra-thin molecular sieving membrane that will be part of the hand-held sensor that lead researcher Yu Lei, an assistant professor from the University of Connecticut (UConn), is working concurrently to design.

The membrane will have pores the size of a fraction of a nanometer, (100,000 times narrower than the diameter of a human hair).

This will allow nitrogen and oxygen to pass through but will trap larger molecules, including those of explosive vapors such as TNT, on its surface, said Yan, whose research focuses on utilizing nanomaterials for advancing technologies important to alternative energy and defense needs.

"The membrane must be immune to moisture in the air because that moisture can clog the pores," said Yan. "And it is crucial that air flows quickly through the membrane. This will make possible a compact sensor and real time detection of explosives."

While Yan is working to develop the membrane, Lei, who received his Ph.D. in 1994 in chemical and environmental engineering from UCR, and his team at UConn will work to develop the hand-held sensor, which will subject the molecules that stay on the membrane to an array of single-walled carbon nanotube-porphyrin conjugates, which signal the presence of explosives or other volatile compounds by a change of their conductivity.

The three-year project is funded by $792,404 grant from the National Science Foundation.

####

About University of California, Riverside
The University of California, Riverside is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment of about 17,000 is projected to grow to 21,000 students by 2010. The campus is planning a medical school and already has reached the heart of the Coachella Valley by way of the UCR Palm Desert Graduate Center. With an annual statewide economic impact of nearly $1 billion, UCR is actively shaping the region's future. To learn more, visit www.ucr.edu or call (951) UCR-NEWS.

For more information, please click here

Contacts:
Kim Lane
Phone: 951.827.2645


Yushan Yan

Copyright © University of California, Riverside

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Yushan Yan

Department of Chemical and Environmental Engineering

Bourns College of Engineering

Related News Press

News and information

SouthWest NanoTechnologies Introduces AgeNT™ Transparent Conductor System at SID Display Week, Booth #543 May 28th, 2015

New technique speeds nanoMRI imaging: Multiplexing technique for nanoscale magnetic resonance imaging developed by researchers in Switzerland cuts normal scan time from two weeks to two days May 28th, 2015

Squeezed quantum cats May 28th, 2015

New chip makes testing for antibiotic-resistant bacteria faster, easier: Researchers at the University of Toronto design diagnostic chip to reduce testing time from days to one hour, allowing doctors to pick the right antibiotic the first time May 28th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Physicists precisely measure interaction between atoms and carbon surfaces May 28th, 2015

Linking superconductivity and structure May 28th, 2015

Chemists discover key reaction mechanism behind the highly touted sodium-oxygen battery May 28th, 2015

Collaboration could lead to biodegradable computer chips May 28th, 2015

Sensors

SouthWest NanoTechnologies Introduces AgeNT™ Transparent Conductor System at SID Display Week, Booth #543 May 28th, 2015

Technology for Tomorrow’s Market Opportunities and Challenges: LetiDays Grenoble Presents the Possibilities: June 24-25 Event Includes Focus on IoT-Augmented Mobility and Leti’s Latest Results on Silicon Technologies, Sensors, Health Applications and Smart Cities May 27th, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Record high sensitive Graphene Hall sensors May 21st, 2015

Announcements

Chemists discover key reaction mechanism behind the highly touted sodium-oxygen battery May 28th, 2015

New technique speeds nanoMRI imaging: Multiplexing technique for nanoscale magnetic resonance imaging developed by researchers in Switzerland cuts normal scan time from two weeks to two days May 28th, 2015

Squeezed quantum cats May 28th, 2015

New chip makes testing for antibiotic-resistant bacteria faster, easier: Researchers at the University of Toronto design diagnostic chip to reduce testing time from days to one hour, allowing doctors to pick the right antibiotic the first time May 28th, 2015

Homeland Security

UCLA nanoscientists are first to model atomic structures of three bacterial nanomachines: Cryo electron microscope enables scientists to explore the frontiers of targeted antibiotics April 21st, 2015

Optics, nanotechnology combined to create low-cost sensor for gases April 3rd, 2015

The Universitat Politècnica de València is coordinating a European project to develop a device for the quick and early diagnosis of cancer March 7th, 2015

Detecting chemical weapons with a color-changing film January 28th, 2015

Military

Linking superconductivity and structure May 28th, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Nanotherapy effective in mice with multiple myeloma May 21st, 2015

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

What makes cancer cells spread? New device offers clues May 19th, 2015

Researchers build new fermion microscope: Instrument freezes and images 1,000 individual fermionic atoms at once May 13th, 2015

International and U.S. Students and Teachers Headed to Toronto for 34th Annual International Space Development Conference®: Students competed in prestigious NSS-NASA Ames Space Settlement Design Contest May 9th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project