Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Study Shows Quantum Dots Can Penetrate Skin Through Minor Abrasions

Abstract:
Quantum dot (QD) nanoparticles have received attention due to their fluorescent characteristics and potential use in medical applications. Skin penetration is one of the major routes of exposure for nanoparticles to gain access to a biological system. QD655 and QD565 coated with carboxylic acid were studied for 8 and 24 h in flow-through diffusion cells with flexed, tape-stripped and abraded rat skin to determine if these mechanical actions could perturb the barrier and affect penetration. Nonflexed skin did not show QD penetration 8 or 24 h. Flexed skin showed an increase in QD on the surface of the skin but no penetration at 8 and 24 h. Tape-stripped skin depicted QD only on the surface of the viable epidermis. QD655 penetrated into the viable dermal layers of abraded skin at both 8 and 24 h, while QD565 was present only at 24 h. QD were not detected in the perfusate by fluorescence and inductively coupled plasma-optical emission spectroscopy analysis for cadmium at any time point. These results indicate that the rat skin penetration of QD655 and QD565 is primarily limited to the uppermost stratum corneum layers of intact skin. Barrier perturbation by tape stripping did not cause penetration, but abrasion allowed QD to penetrate deeper into the dermal layers.

Study Shows Quantum Dots Can Penetrate Skin Through Minor Abrasions

Raleigh, NC | Posted on July 2nd, 2008

Researchers at North Carolina State University have found that quantum dot nanoparticles can penetrate the skin if there is an abrasion, providing insight into potential workplace concerns for healthcare workers or individuals involved in the manufacturing of quantum dots or doing research on potential biomedical applications of the tiny nanoparticles.

While the study shows that quantum dots of different sizes, shapes and surface coatings do not penetrate rat skin unless there is an abrasion, it shows that even minor cuts or scratches could potentially allow these nanoparticles to penetrate deep into the viable dermal layer - or living part of the skin - and potentially reach the bloodstream.

Dr. Nancy Monteiro-Riviere, professor of investigative dermatology and toxicology at NC State's College of Veterinary Medicine, tested the ability of the quantum dots to penetrate rat skin at 8 and 24 hour intervals. The experiment evaluated rat skin in various stages of distress - including healthy skin, skin that had been stripped using adhesive tape and skin that had been abraded by a rough surface. The researchers also assessed whether flexing the skin affected the quantum dots' ability to penetrate into the dermal layer. Monteiro-Riviere co-authored the study with doctoral student Leshuai Zhang.

While the study indicates that acute - or short-term - dermal exposure to quantum dots does not pose a risk of penetration (unless there is an abrasion), Monteiro-Riviere notes "there is still uncertainty on long-term exposure." Monteiro-Riviere explains that the nanoparticles may be able to penetrate skin if there is prolonged, repeated exposure, but so far no studies have been conducted to date to examine that possibility. Quantum dots are fluorescent nanoparticles that may be used to improve biomedical imaging, drug delivery and diagnostic testing.

This finding is of importance to risk assessment for nanoscale materials because it indicates that skin barrier alterations - such as wounds, scrapes, or dermatitis conditions - could affect nanoparticle penetration and that skin is a potential route of exposure and should not be overlooked.

The study found that the quantum dots did not penetrate even after flexing the skin, and that the nanoparticles only penetrated deep into the dermal layer when the skin was abraded. Although quantum dots are incredibly small, they are significantly larger than the fullerenes - or buckyballs - that Monteiro-Riviere showed in a 2007 study in Nano Letters can deeply and rapidly penetrate healthy skin when there is repetitive flexing of the skin.

Additionally, Monteiro-Riviere's laboratory previously showed quantum dots of different size, shape and surface coatings could penetrate into pig skin. The anatomical complexity of skin and species differences should be taken into consideration when selecting an animal model to study nanoparticle absorption/penetration. Human skin studies are also being conducted, but "it is important to investigate species differences and to determine an appropriate animal model to study nanoparticle penetration," Monteiro-Riviere says. "Not everyone can obtain fresh human skin for research."

Nanoparticles are generally defined as being smaller than 100 nanometers (thousands of times thinner than a human hair), and are expected to have widespread uses in medicine, consumer products and industrial processes.

The study, "Assessment of Quantum Dot Penetration into Intact, Tape-Stripped, Abraded and Flexed Rat Skin," was published in the June issue of Skin Pharmacology and Physiology.

-shipman-

Note to Editors: The study abstract follows.

"Assessment of Quantum Dot Penetration into Intact, Tape-Stripped, Abraded and Flexed Rat Skin"

Authors: L.W. Zhang and N.A. Monteiro-Riviere, North Carolina State University

Published: May 2008, in Skin Pharmacology and Physiology.

####

For more information, please click here

Contacts:
Dr. Nancy Monteiro-Riviere
(919) 513-6426


Matt Shipman
News Services
(919) 515-3470

Copyright © North Carolina State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Aculon Hires New Business Development Director December 19th, 2014

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Discoveries

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Creation of 'Rocker' protein opens way for new smart molecules in medicine, other fields December 18th, 2014

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Announcements

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Aculon Hires New Business Development Director December 19th, 2014

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Safety-Nanoparticles/Risk management

Nutrition, Safety Key To Consumer Acceptance of Nanotech, Genetic Modification In Foods December 2nd, 2014

Sustainable Nanotechnologies Project November 20th, 2014

A gut reaction November 19th, 2014

Nanosafety research – there’s room for improvement October 29th, 2014

Quantum Dots/Rods

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Scientists trace nanoparticles from plants to caterpillars: Rice University study examines how nanoparticles behave in food chain December 16th, 2014

TCL Launches World’s Most Advanced TV in the World’s Largest Market: New Quantum Dot TVs with Color IQ™ Optics Deliver OLED-Quality Color at a Fraction of the Price December 15th, 2014

Electron pairs on demand: Controlled emission and spatial splitting of electron pairs demonstrated December 4th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE