Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > New paper offers insights into “blinking” phenomenon

Abstract:
A new paper by a team of researchers led by University of Notre Dame physicist Bolizsár Jankó provides an overview of research into one of the few remaining unsolved problems of quantum mechanics.

New paper offers insights into “blinking” phenomenon

Notre Dame, IN | Posted on July 1st, 2008

More than a century ago, at the dawn of modern quantum mechanics, the Nobel Prize-winning physicist Neils Bohr predicted so-called "quantum jumps." He predicted that these jumps would be due to electrons making transitions between discrete energy levels of individual atoms and molecules. Although controversial in Bohr's time, such quantum jumps were experimentally observed, and his prediction verified, in the 1980s. More recently, with the development of single molecule imaging techniques in the early 1990s, it has been possible to observe similar jumps in individual molecules.

Experimentally, these quantum jumps translate to discrete interruptions of the continuous emission from single molecules, revealing a phenomenon known as florescent intermittency or "blinking."

However, while certain instances of blinking can be directly ascribed to Bohr's original quantum jumps, many more cases exist where the observed fluorescence intermittency does not follow his predictions. Specifically, in systems as diverse as fluorescent proteins, single-light harvesting complexes, single organic fluorophores, and, most recently, individual inorganic nanostructures, clear deviations from Bohr's predictions occur.

As a consequence, virtually all know fluorophores, including fluorescent quantum dots and molecules, exhibit unexplainable episodes of intermittent "blinking" in their emission. The underlying quantum mechanical process responsible for this phenomenon is an enduring mystery in modern chemical physics.

In a paper appearing in today's edition of the journal Nature Physics, Jankó and his colleagues present a "progress report" on the research, including their own, that has been aimed at unlocking the mysteries of these fluorescent molecules or flourophores. They hope the paper will help spark further experimental and theoretical activity to solve the mystery of fluorescence intermittency.

Finding the answer could lead to powerful imaging probes that will enable future researchers to better track disease-related molecules within cells.

"Fluorescent molecules could be of fundamental importance in imaging biological systems and monitoring dynamic processes in vivo," Jankó said. "One of the most attractive types of flourophores today are semiconductor nanocrystal quantum dots (NQD). Their small size, brightness, photostability and highly tunable fluorescent color make them vastly superior to organic dyes."

The blinking phenomenon, however, presents a daunting difficulty in using these dots, especially for such applications as single-molecule biological imaging, where a single NQD is used as a fluorescent label.

"The NQD is fluorescent for some time, a so-called ‘on-time,' and then becomes optically inactive, experiencing an ‘off-time,' whereupon it turns on again," Jankó said.

If the blinking process could be controlled, quantum dots could, for example, provide better, more stable, multi-color imaging of cancer cells or provide researchers with real-time images of a viral infection, such HIV, within a cell.

"It is very important to elucidate the origin of this phenomenon and to identify ways to control the blinking process," Jankó said.

Jankó's Notre Dame research group already has taken a strong first step toward understanding the phenomenon through research by group member Masaru Kuno, an assistant professor of chemistry and biochemistry at the University. Kuno has discovered that the on- and off-time intervals of intermittent nanocrystal quantum dots follow a universal power law distribution. This discovery has provided Notre Dame researchers and others with the first hints for developing a deeper insight into the physical mechanism behind the vast range of on- and off-times in the intermittency.

Jankó has received a $1.2 million National Science Foundation Nanoscale Interdisciplinary Research Team (NIRT) grant to help solve the fluorescence intermittency mystery.

####

About University of Notre Dame
The University of Notre Dame, founded in 1842 by Rev. Edward F. Sorin, C.S.C., of the Congregation of Holy Cross, is an independent, national Catholic university located in Notre Dame, Ind., adjacent to the city of South Bend and approximately 90 miles east of Chicago.

For more information, please click here

Contacts:
Boldizsár Jankó
professor of physics
574-631-8049

Copyright © University of Notre Dame

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Superheroes are real: Ultrasensitive nonlinear metamaterials for data transfer June 25th, 2016

Russian physicists create a high-precision 'quantum ruler': Physicists have devised a method for creating a special quantum entangled state June 25th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

Particle zoo in a quantum computer: First experimental quantum simulation of particle physics phenomena June 23rd, 2016

Titan shines light on high-temperature superconductor pathway: Simulation demonstrates how superconductivity arises in cuprates' pseudogap phase June 22nd, 2016

Discoveries

Superheroes are real: Ultrasensitive nonlinear metamaterials for data transfer June 25th, 2016

Russian physicists create a high-precision 'quantum ruler': Physicists have devised a method for creating a special quantum entangled state June 25th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

Announcements

Superheroes are real: Ultrasensitive nonlinear metamaterials for data transfer June 25th, 2016

Russian physicists create a high-precision 'quantum ruler': Physicists have devised a method for creating a special quantum entangled state June 25th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

Quantum Dots/Rods

A new form of hybrid photodetectors with quantum dots and graphene June 19th, 2016

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

ORNL demonstrates large-scale technique to produce quantum dots May 21st, 2016

First single-enzyme method to produce quantum dots revealed: Biological manufacturing process, pioneered by three Lehigh University engineers, produces equivalent quantum dots to those made chemically--but in a much greener, cheaper way May 9th, 2016

Quantum nanoscience

CWRU physicists deploy magnetic vortex to control electron spin: Potential technology for quantum computing, keener sensors June 21st, 2016

Neutrons reveal unexpected magnetism in rare-earth alloy June 16th, 2016

Spintronics: Resetting the future of heat assisted magnetic recording June 15th, 2016

NIST's super quantum simulator 'entangles' hundreds of ions June 11th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic