Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > New paper offers insights into “blinking” phenomenon

Abstract:
A new paper by a team of researchers led by University of Notre Dame physicist Bolizsár Jankó provides an overview of research into one of the few remaining unsolved problems of quantum mechanics.

New paper offers insights into “blinking” phenomenon

Notre Dame, IN | Posted on July 1st, 2008

More than a century ago, at the dawn of modern quantum mechanics, the Nobel Prize-winning physicist Neils Bohr predicted so-called "quantum jumps." He predicted that these jumps would be due to electrons making transitions between discrete energy levels of individual atoms and molecules. Although controversial in Bohr's time, such quantum jumps were experimentally observed, and his prediction verified, in the 1980s. More recently, with the development of single molecule imaging techniques in the early 1990s, it has been possible to observe similar jumps in individual molecules.

Experimentally, these quantum jumps translate to discrete interruptions of the continuous emission from single molecules, revealing a phenomenon known as florescent intermittency or "blinking."

However, while certain instances of blinking can be directly ascribed to Bohr's original quantum jumps, many more cases exist where the observed fluorescence intermittency does not follow his predictions. Specifically, in systems as diverse as fluorescent proteins, single-light harvesting complexes, single organic fluorophores, and, most recently, individual inorganic nanostructures, clear deviations from Bohr's predictions occur.

As a consequence, virtually all know fluorophores, including fluorescent quantum dots and molecules, exhibit unexplainable episodes of intermittent "blinking" in their emission. The underlying quantum mechanical process responsible for this phenomenon is an enduring mystery in modern chemical physics.

In a paper appearing in today's edition of the journal Nature Physics, Jankó and his colleagues present a "progress report" on the research, including their own, that has been aimed at unlocking the mysteries of these fluorescent molecules or flourophores. They hope the paper will help spark further experimental and theoretical activity to solve the mystery of fluorescence intermittency.

Finding the answer could lead to powerful imaging probes that will enable future researchers to better track disease-related molecules within cells.

"Fluorescent molecules could be of fundamental importance in imaging biological systems and monitoring dynamic processes in vivo," Jankó said. "One of the most attractive types of flourophores today are semiconductor nanocrystal quantum dots (NQD). Their small size, brightness, photostability and highly tunable fluorescent color make them vastly superior to organic dyes."

The blinking phenomenon, however, presents a daunting difficulty in using these dots, especially for such applications as single-molecule biological imaging, where a single NQD is used as a fluorescent label.

"The NQD is fluorescent for some time, a so-called ‘on-time,' and then becomes optically inactive, experiencing an ‘off-time,' whereupon it turns on again," Jankó said.

If the blinking process could be controlled, quantum dots could, for example, provide better, more stable, multi-color imaging of cancer cells or provide researchers with real-time images of a viral infection, such HIV, within a cell.

"It is very important to elucidate the origin of this phenomenon and to identify ways to control the blinking process," Jankó said.

Jankó's Notre Dame research group already has taken a strong first step toward understanding the phenomenon through research by group member Masaru Kuno, an assistant professor of chemistry and biochemistry at the University. Kuno has discovered that the on- and off-time intervals of intermittent nanocrystal quantum dots follow a universal power law distribution. This discovery has provided Notre Dame researchers and others with the first hints for developing a deeper insight into the physical mechanism behind the vast range of on- and off-times in the intermittency.

Jankó has received a $1.2 million National Science Foundation Nanoscale Interdisciplinary Research Team (NIRT) grant to help solve the fluorescence intermittency mystery.

####

About University of Notre Dame
The University of Notre Dame, founded in 1842 by Rev. Edward F. Sorin, C.S.C., of the Congregation of Holy Cross, is an independent, national Catholic university located in Notre Dame, Ind., adjacent to the city of South Bend and approximately 90 miles east of Chicago.

For more information, please click here

Contacts:
Boldizsár Jankó
professor of physics
574-631-8049

Copyright © University of Notre Dame

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

French Institutes IRT Nanoelec and CMP Team up to Offer World’s First Service for Post-process 3D Technologies on Multi-Project-Wafer March 5th, 2015

The George Washington University Opens Science and Engineering Hall, Largest Building of Its Kind in D.C.: Building Represents Significant Investment in Research Programs and Facilities; Commitment to Solve Global Problems, Improve Lives of Millions March 5th, 2015

Anousheh Ansari Wins the National Space Society's Space Pioneer Award for "Service to the Space Community" March 5th, 2015

Enhanced Graphene Components for Next Generation Racing Yacht March 5th, 2015

Govt.-Legislation/Regulation/Funding/Policy

New research could lead to more efficient electrical energy storage March 4th, 2015

Energy-generating cloth could replace batteries in wearable devices March 4th, 2015

The taming of magnetic vortices: Unified theory for skyrmion-materials March 3rd, 2015

Black phosphorus is new 'wonder material' for improving optical communication March 3rd, 2015

Discoveries

Enhanced Graphene Components for Next Generation Racing Yacht March 5th, 2015

American Chemical Society Presidential Symposia: nanoscience, international chemistry March 5th, 2015

Magnetic vortices in nanodisks reveal information: Researchers from Dresden and Jülich use microwaves to read out information from smallest storage devices March 4th, 2015

CiQUS researchers obtain high-quality perovskites over large areas by a chemical method March 4th, 2015

Announcements

The George Washington University Opens Science and Engineering Hall, Largest Building of Its Kind in D.C.: Building Represents Significant Investment in Research Programs and Facilities; Commitment to Solve Global Problems, Improve Lives of Millions March 5th, 2015

Anousheh Ansari Wins the National Space Society's Space Pioneer Award for "Service to the Space Community" March 5th, 2015

Enhanced Graphene Components for Next Generation Racing Yacht March 5th, 2015

Get ready for NanoDays! March 5th, 2015

Quantum Dots/Rods

Optical nanoantennas set the stage for a NEMS lab-on-a-chip revolution February 24th, 2015

QD Vision Named Edison Award Finalist for Innovative Color IQ™ Quantum Dot Technology February 23rd, 2015

Ocean Optics Names Winner of 2015 Young Investigator Award: Cash prize and grant awarded during SPIE BiOS/Photonics West 2015 conference February 21st, 2015

Rediscovering spontaneous light emission: Berkeley researchers develop optical antenna for LEDs February 3rd, 2015

Quantum nanoscience

Important step towards quantum computing: Metals at atomic scale March 2nd, 2015

Quantum many-body systems on the way back to equilibrium: Advances in experimental and theoretical physics enable a deeper understanding of the dynamics and properties of quantum many-body systems February 25th, 2015

Quantum research past, present and future for discussion at AAAS February 16th, 2015

Exotic states materialize with supercomputers February 12th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE