Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > R&D Profile: Stimuli-Responsive Polymers in bioMEMS Devices: F. Montagne, Swiss Center for Electronics and Microtechnology, CH

SEM images of free-standing nanoporous silicon-based membranes: (left) top view showing ∼ 35 nm pores with narrow size distribution and (right) side view of 60 nm thick membrane supported by reinforcement bars.
SEM images of free-standing nanoporous silicon-based membranes: (left) top view showing ∼ 35 nm pores with narrow size distribution and (right) side view of 60 nm thick membrane supported by reinforcement bars.

Abstract:
Dr Franck Montagne is senior R&D engineer in the department of Nanotechnology and Life Science at the Swiss Center for Electronics and Microtechnology (CSEM), a privately held research and development company which has headquarters in Neuchâtel, Switzerland.

R&D Profile: Stimuli-Responsive Polymers in bioMEMS Devices: F. Montagne, Swiss Center for Electronics and Microtechnology, CH

Cambridge, MA | Posted on June 28th, 2008

Stimuli-responsive polymers, also referred to as "smart" polymers, are a very interesting class of materials since they exhibit marked and rapid conformational changes in response to external stimuli such as temperature, pH, electric field or ionic strength. When coated onto a surface, they confer to the resulting materials some unique properties and offer the possibility to achieve control over biocompatibility, wettability or permeability, for instance. Due to their outstanding properties, stimuli-responsive polymers have been attracting considerable attention in biotechnologies and successful applications have already been demonstrated in sensing, intelligent textiles, bio-separation and drug delivery systems. Integration of smart polymers in the fabrication process or in the post-modification of Micro/Nano Electro-Mechanical Systems (MEMS/NEMS) is considered to be a real cornerstone since it allows the introduction of new functionalities to micron/nanoscale silicon-based devices.

In order to illustrate CSEM's activities in this field, we presented at Nanotech 2008 in Boston two examples of real case application of stimuli-responsive polymers in bioMEMS devices. First, we described the fabrication of silicon chips whose surface is modified with poly(N-isopropylacrylamide) (PNIPAM), a thermally-responsive polymer exhibiting a lower critical solubility temperature (LCST) at about 32°C in pure water. Below the LCST, PNIPAM chains are hydrated and form expanded structures in water, whereas they are dehydrated and collapse when temperature is raised above the LCST. In the latter case, it is known that cells adhere and even proliferate on PNIPAM surface, whereas they are progressively released when the temperature is decreased below the LCST. The reversibility of this process was demonstrated in-house with mouse fibroblast 3T3. Based on these results, we produced small silicon chips presenting a pattern of PNIPAM micro-domains of tuneable sizes, typically ranging from 10 μm to 200 μm, for the reversible capture and release of individual cells. These intelligent chips are now integrated into a fully automated cell injection platform equipped with micromanipulator and vision system for high throughput cell transfection.

As a second example, we reported the wafer-scale fabrication of free-standing nanoporous silicon-based membrane having thickness < 100 nm and pore size of about 35 nm (see SEM pictures). These membranes are produced using a CSEM proprietary process combining block copolymer lithography and standard microfabrication techniques. Here, the use of responsive block copolymers permits to precisely control the size and size distribution of the nanopores (typically from few nm to few tens of nm), as well as the final thickness of the membrane. These membranes show remarkable mechanical properties since they withstand a differential pressure of a few bars. The use of these nanoporous membranes for highly selective filtration of biological species and for sensing is currently evaluated at CSEM. First results already show great promises and indicate that nanoporous membranes made from block copolymers self-assembly clearly surpass existing membrane technology (track etched and ultrafiltration membranes) in terms of selectivity and separation rate.

####

About NSTI
For Technology and Informational Services please contact:
Matthew Laudon, Ph.D.
Executive Director, NSTI
Ph: (508) 357-2925
Fax: (925) 886-8461

For more information, please click here

Contacts:
For Technology and Informational Services please contact:
Matthew Laudon, Ph.D.
Executive Director, NSTI
Ph: (508) 357-2925
Fax: (925) 886-8461

Copyright © NSTI

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Organometallics welcomes new editor-in-chief: Paul Chirik, Ph.D. July 22nd, 2014

The Hiden EQP Plasma Diagnostic with on-board MCA July 22nd, 2014

Iran to Hold 3rd Int'l Forum on Nanotechnology Economy July 22nd, 2014

Nanometrics Announces Upcoming Investor Events July 22nd, 2014

MEMS

Carbyne morphs when stretched: Rice University calculations show carbon-atom chain would go metal to semiconductor July 21st, 2014

Leti to Present Technological Platforms Targeting Industry’s Needs for the Future at Semicon West Workshop: Presentation at STS Session to Focus on Leti Advanced Lithography Programs for 1x Nodes and on Silicon Photonics at TechXPot June 25th, 2014

Mirrorcle Technologies Opens New Company Headquarters May 27th, 2014

Ziptronix and EV Group Demonstrate Submicron Accuracies for Wafer-to-Wafer Hybrid Bonding: Enables Fine-Pitch Connections for 3D Applications, Including Image Sensors, Memory and 3D SoCs May 27th, 2014

Announcements

Nanometrics Announces Upcoming Investor Events July 22nd, 2014

Bruker Awarded Fourth PeakForce Tapping Patent: AFM Mode Uniquely Combines Highest Resolution Imaging and Material Property Mapping July 22nd, 2014

NIST shows ultrasonically propelled nanorods spin dizzyingly fast July 22nd, 2014

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

Nanobiotechnology

Production of Non-Virus Nanocarriers with Highest Amount of Gene Delivery July 17th, 2014

Physicists Use Computer Models to Reveal Quantum Effects in Biological Oxygen Transport: The team solved a long-standing question by explaining why oxygen – and not deadly carbon monoxide – preferably binds to the proteins that transport it around the body. July 17th, 2014

Tiny DNA pyramids enter bacteria easily -- and deliver a deadly payload July 9th, 2014

Artificial cilia: Scientists from Kiel University develop nano-structured transportation system July 4th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE