Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > R&D Profile: Stimuli-Responsive Polymers in bioMEMS Devices: F. Montagne, Swiss Center for Electronics and Microtechnology, CH

SEM images of free-standing nanoporous silicon-based membranes: (left) top view showing ∼ 35 nm pores with narrow size distribution and (right) side view of 60 nm thick membrane supported by reinforcement bars.
SEM images of free-standing nanoporous silicon-based membranes: (left) top view showing ∼ 35 nm pores with narrow size distribution and (right) side view of 60 nm thick membrane supported by reinforcement bars.

Abstract:
Dr Franck Montagne is senior R&D engineer in the department of Nanotechnology and Life Science at the Swiss Center for Electronics and Microtechnology (CSEM), a privately held research and development company which has headquarters in Neuchâtel, Switzerland.

R&D Profile: Stimuli-Responsive Polymers in bioMEMS Devices: F. Montagne, Swiss Center for Electronics and Microtechnology, CH

Cambridge, MA | Posted on June 28th, 2008

Stimuli-responsive polymers, also referred to as "smart" polymers, are a very interesting class of materials since they exhibit marked and rapid conformational changes in response to external stimuli such as temperature, pH, electric field or ionic strength. When coated onto a surface, they confer to the resulting materials some unique properties and offer the possibility to achieve control over biocompatibility, wettability or permeability, for instance. Due to their outstanding properties, stimuli-responsive polymers have been attracting considerable attention in biotechnologies and successful applications have already been demonstrated in sensing, intelligent textiles, bio-separation and drug delivery systems. Integration of smart polymers in the fabrication process or in the post-modification of Micro/Nano Electro-Mechanical Systems (MEMS/NEMS) is considered to be a real cornerstone since it allows the introduction of new functionalities to micron/nanoscale silicon-based devices.

In order to illustrate CSEM's activities in this field, we presented at Nanotech 2008 in Boston two examples of real case application of stimuli-responsive polymers in bioMEMS devices. First, we described the fabrication of silicon chips whose surface is modified with poly(N-isopropylacrylamide) (PNIPAM), a thermally-responsive polymer exhibiting a lower critical solubility temperature (LCST) at about 32°C in pure water. Below the LCST, PNIPAM chains are hydrated and form expanded structures in water, whereas they are dehydrated and collapse when temperature is raised above the LCST. In the latter case, it is known that cells adhere and even proliferate on PNIPAM surface, whereas they are progressively released when the temperature is decreased below the LCST. The reversibility of this process was demonstrated in-house with mouse fibroblast 3T3. Based on these results, we produced small silicon chips presenting a pattern of PNIPAM micro-domains of tuneable sizes, typically ranging from 10 μm to 200 μm, for the reversible capture and release of individual cells. These intelligent chips are now integrated into a fully automated cell injection platform equipped with micromanipulator and vision system for high throughput cell transfection.

As a second example, we reported the wafer-scale fabrication of free-standing nanoporous silicon-based membrane having thickness < 100 nm and pore size of about 35 nm (see SEM pictures). These membranes are produced using a CSEM proprietary process combining block copolymer lithography and standard microfabrication techniques. Here, the use of responsive block copolymers permits to precisely control the size and size distribution of the nanopores (typically from few nm to few tens of nm), as well as the final thickness of the membrane. These membranes show remarkable mechanical properties since they withstand a differential pressure of a few bars. The use of these nanoporous membranes for highly selective filtration of biological species and for sensing is currently evaluated at CSEM. First results already show great promises and indicate that nanoporous membranes made from block copolymers self-assembly clearly surpass existing membrane technology (track etched and ultrafiltration membranes) in terms of selectivity and separation rate.

####

About NSTI
For Technology and Informational Services please contact:
Matthew Laudon, Ph.D.
Executive Director, NSTI
Ph: (508) 357-2925
Fax: (925) 886-8461

For more information, please click here

Contacts:
For Technology and Informational Services please contact:
Matthew Laudon, Ph.D.
Executive Director, NSTI
Ph: (508) 357-2925
Fax: (925) 886-8461

Copyright © NSTI

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Northwestern researchers achieve unprecedented control of polymer grids: Materials could find applications in water purification, solar energy storage, body armor June 22nd, 2018

Nanobiotix Publishes Positive Phase 2/3 Data For Nanomedicine in Soft Tissue Cancer (Webcast June 22) June 22nd, 2018

Alzheimer's breakthrough: Brain metals that may drive disease progression revealed: In brains affected by Alzheimer's, researchers identify chemically reduced iron species, with mineral forms including a magnetic iron oxide June 22nd, 2018

Collaboration yields discovery of 12-sided silica cages June 20th, 2018

MEMS

Executives Explore Key Megatrends and Innovations in MEMS, Sensors, Imaging Tech at SEMI-MSIG European Summits: Speakers to share developments in smart automotive, smart cities, smart industrial, biomedical, consumer and IoT, September 19-21, 2018 in Grenoble, France June 19th, 2018

HTA to Present European Strategy for Competitive Micro- and Nanotechnologies & Smart Systems: Special Event in Brussels on April 24 Gathers Research Institutes’ CEOs, European Commissioners and Key European Industrials April 17th, 2018

New approach to measuring stickiness could aid micro-device design March 8th, 2018

MEMS chips get metatlenses: Combining metasurface lenses with MEMS technology could add high-speed scanning and enhance focusing capability of optical systems February 21st, 2018

Announcements

Northwestern researchers achieve unprecedented control of polymer grids: Materials could find applications in water purification, solar energy storage, body armor June 22nd, 2018

Nanobiotix Publishes Positive Phase 2/3 Data For Nanomedicine in Soft Tissue Cancer (Webcast June 22) June 22nd, 2018

Alzheimer's breakthrough: Brain metals that may drive disease progression revealed: In brains affected by Alzheimer's, researchers identify chemically reduced iron species, with mineral forms including a magnetic iron oxide June 22nd, 2018

Collaboration yields discovery of 12-sided silica cages June 20th, 2018

Nanobiotechnology

Nanobiotix Publishes Positive Phase 2/3 Data For Nanomedicine in Soft Tissue Cancer (Webcast June 22) June 22nd, 2018

Alzheimer's breakthrough: Brain metals that may drive disease progression revealed: In brains affected by Alzheimer's, researchers identify chemically reduced iron species, with mineral forms including a magnetic iron oxide June 22nd, 2018

Collaboration yields discovery of 12-sided silica cages June 20th, 2018

JPK talks with Dr Frank Lafont, Director of the BioImaging Center Lille (BICeL) about the use of the NanoWizard® AFM together with fluorescence microscopy in the study of living cells June 19th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project