Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > University of Pennsylvania Engineers Reveal What Makes Diamonds Slippery at the Nanoscale

Abstract:
They call diamonds "ice," and not just because they sparkle. Engineers and physicists have long studied diamond because even though the material is as hard as an ice ball to the head, diamond slips and slides with remarkably low friction, making it an ideal material or coating for seals, high performance tools and high-tech moving parts.

University of Pennsylvania Engineers Reveal What Makes Diamonds Slippery at the Nanoscale

Philadelphia, PA | Posted on June 26th, 2008

Robert Carpick, associate professor in the Department of Mechanical Engineering and Applied Mechanics at the University of Pennsylvania, and his group led a collaboration with researchers from Argonne National Laboratories, the University of Wisconsin-Madison and the University of Florida to determine what makes diamond films such slippery customers, settling a debate on the scientific origin of its properties and providing new knowledge that will help create the next generation of super low friction materials.

The Penn experiments, the first study of diamond friction convincingly supported by spectroscopy, looked at two of the main hypotheses posited for years as to why diamonds demonstrate such low friction and wear properties. Using a highly specialized technique know as photoelectron emission microscopy, or PEEM, the study reveals that this slippery behavior comes from passivation of atomic bonds at the diamond surface that were broken during sliding and not from the diamond turning into its more stable form, graphite. The bonds are passivated by dissociative adsorption of water molecules from the surrounding environment. The researchers also found that friction increases dramatically if there is not enough water vapor in the environment.

Some previous explanations for the source of diamond's super low friction and wear assumed that the friction between sliding diamond surfaces imparted energy to the material, converting diamond into graphite, itself a lubricating material. However, until this study no detailed spectroscopic tests had ever been performed to determine the legitimacy of this hypothesis. The PEEM instrument, part of the Advanced Light Source at Lawrence Berkeley National Laboratory, allowed the group to image and identify the chemical changes on the diamond surface that occurred during the sliding experiment.

The team tested a thin film form of diamond known as ultrananocrystalline diamond and found super low friction (a friction coefficient ~0.01, which is more slippery than typical ice) and low wear, even in extremely dry conditions, (relative humidity ~1.0%). Using a microtribometer, a precise friction tester, and X—ray photoelectron emission microscopy, a spatially resolved X-ray spectroscopy technique, they examined wear tracks produced by sliding ultrananocrystalline diamond surfaces together at different relative humidities and loads. They found no detectable formation of graphite and just a small amount of carbon re-bonded from diamond to amorphous carbon. However, oxygen was present on the worn part of the surface, indicating that bonds broken during sliding were eventually passivated by the water molecules in the environment.

Already used in industry as a mechanical seal coating to reduce wear and improve performance and also as a super-hard coating for high-performance cutting tools, this work could help lead to increased use of diamond films in machines and devices to increase service life, prevent wear of parts and save energy wasted by friction.

The study was published in the June issue of the journal Physical Review Letters and was conducted by A.R. Konicek of the Department of Physics and Astronomy at Penn, D.S. Grierson of the Department of Engineering Physics at Wisconsin-Madison, P.U.P.A. Gilbert of the Department of Physics at Wisconsin-Madison, W.G. Sawyer of the Department of Mechanical and Aerospace Engineering at Florida, A.V. Sumant of the Center for Nanoscale Materials at Argonne National Laboratory and Carpick.

Funding was provided by the U.S. Air Force and the U.S. Department of Energy.

####

For more information, please click here

Contacts:
Jordan Reese
215-573-6604

Copyright © University of Pennsylvania

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Smallest possible diamonds form ultra-thin nanothreads: Diamond nanothreads are likely to have extraordinary properties, including strength and stiffness greater than that of today's strongest nanotubes and polymers September 22nd, 2014

Engineers show light can play seesaw at the nanoscale: Discovery is another step toward faster and more energy-efficient optical devices for computation and communication September 22nd, 2014

New chip promising for tumor-targeting research September 22nd, 2014

Twisted graphene chills out: When two sheets of graphene are stacked in a special way, it is possible to cool down the graphene with a laser instead of heating it up, University of Manchester researchers have shown September 22nd, 2014

Govt.-Legislation/Regulation/Funding/Policy

Engineered proteins stick like glue — even in water: New adhesives based on mussel proteins could be useful for naval or medical applications September 22nd, 2014

Smallest possible diamonds form ultra-thin nanothreads: Diamond nanothreads are likely to have extraordinary properties, including strength and stiffness greater than that of today's strongest nanotubes and polymers September 22nd, 2014

Engineers show light can play seesaw at the nanoscale: Discovery is another step toward faster and more energy-efficient optical devices for computation and communication September 22nd, 2014

New chip promising for tumor-targeting research September 22nd, 2014

Discoveries

Smallest possible diamonds form ultra-thin nanothreads: Diamond nanothreads are likely to have extraordinary properties, including strength and stiffness greater than that of today's strongest nanotubes and polymers September 22nd, 2014

Engineers show light can play seesaw at the nanoscale: Discovery is another step toward faster and more energy-efficient optical devices for computation and communication September 22nd, 2014

New chip promising for tumor-targeting research September 22nd, 2014

Twisted graphene chills out: When two sheets of graphene are stacked in a special way, it is possible to cool down the graphene with a laser instead of heating it up, University of Manchester researchers have shown September 22nd, 2014

Materials/Metamaterials

Engineered proteins stick like glue — even in water: New adhesives based on mussel proteins could be useful for naval or medical applications September 22nd, 2014

Smallest possible diamonds form ultra-thin nanothreads: Diamond nanothreads are likely to have extraordinary properties, including strength and stiffness greater than that of today's strongest nanotubes and polymers September 22nd, 2014

New star-shaped molecule breakthrough: Scientists at The University of Manchester have generated a new star-shaped molecule made up of interlocking rings, which is the most complex of its kind ever created September 22nd, 2014

Synthesis of Nanostructures with Controlled Shape, Size in Iran September 22nd, 2014

Announcements

Engineers show light can play seesaw at the nanoscale: Discovery is another step toward faster and more energy-efficient optical devices for computation and communication September 22nd, 2014

New chip promising for tumor-targeting research September 22nd, 2014

Twisted graphene chills out: When two sheets of graphene are stacked in a special way, it is possible to cool down the graphene with a laser instead of heating it up, University of Manchester researchers have shown September 22nd, 2014

New star-shaped molecule breakthrough: Scientists at The University of Manchester have generated a new star-shaped molecule made up of interlocking rings, which is the most complex of its kind ever created September 22nd, 2014

Research partnerships

Biosensors Get a Boost from Graphene Partnership: $5 Million Investment Supports Dozens of Jobs and Development of 300mm Fabrication Process and Wafer Transfer Facility September 18th, 2014

The Pocket Project will develop a low-cost and accurate point-of-care test to diagnose Tuberculosis: ICN2 holds a follow-up meeting of the Project on September 18th - 19th September 18th, 2014

Recruiting bacteria to be technology innovation partners: September 17th, 2014

Carbon Sciences Developing Breakthrough Technology to Mass-Produce Graphene -- the New Miracle Material: Company Enters Into an Agreement With the University of California, Santa Barbara (UCSB) to Fund the Further Development of a New Graphene Process September 16th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE