Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > ETH Zurich and the IBM Zurich Research Laboratory (ZRL) have today announced the establishment of a strategic partnership in nanotechnology

Abstract:
The two partner institutions will operate a new, common nanotech laboratory, which will be built on the ZRL campus. The new building inludes cutting-edge research infrastructure and will cost 90 mil-lion USD. The two partners have a long-standing tradition of scientific cooperation, and now make an important step to deepen this collaboration further by forming a strategic partnership in the field of nanotechnology. The collaborative project was revealed at a joint media conference in Zurich by Prof. Ralph Eichler, President of ETH Zurich, and John E. Kelly III, Senior Vice-President and Director of IBM Research. As part of this collaboration, a new building with cutting-edge research facilities will be constructed on the campus of the IBM Zurich Research Laboratory in Rüschlikon (CH), with the laying of the founda-tion stone scheduled in spring 2009, and the start of research activities in 2011.

ETH Zurich and the IBM Zurich Research Laboratory (ZRL) have today announced the establishment of a strategic partnership in nanotechnology

Zurich, Switzerland | Posted on June 26th, 2008

A value-add for Swiss industry

"This nanotech lab will have a strong value-add, not only for the participating institu-tions, but for Swiss industry as a whole", said Professor Ralph Eichler, "as we are open to collaborations with Swiss companies and research institutes". With EMPA - the Swiss interdisciplinary research institution for material sciences and technology devel-opment - one additional partner for collaboration is already involved. The collaboration brings with it considerable potential for the creation of new production techniques from which Switzerland, with its sizeable community of SMEs, will profit.

The nanotech lab will make world-beating research possible, but the partnership itself is also innovative. "By creating this common research center, IBM is expanding a collabo-rative and cooperative research program aimed at accelerating our understanding and implementation of nanotechnology and its broad range of applications", said Dr. Kelly. "We see this type of collaboration as an emerging model for future industry-academic partnerships".

New building - shared infrastructure

The two institutions will focus on research in various fields of nanotechnology, ranging from exploratory and basic research to applied and near-term projects. Several areas for joint research projects have been identified, such as carbon-based materials, nano-photonics, spintronics, nanowires, and tribology. The novel concept of a shared re-search facility with more than 900 m2 of cleanroom area will be built in the nanotech lab with three sections: one each for exclusive use by IBM and ETH Zurich, as well as an area that both partners will share. The costs of the new building amount to 90 million USD, of which 30 million USD alone will be dedicated to cutting-edge infrastructure. The partners will share expenditure for infrastructure; the building investment itself will be undertaken by IBM. ETH Zurich will rent the space and share the operations costs with IBM. The strategic partnership is intended to be in place for at least 10 years. Apart from joint research activities each partner institution is free to pursue its own projects.

For ETH Zurich the new Nanotech Lab on the IBM campus at Rüschlikon is a perfect complement to the existing research infrastructure at ETH Zurich Hönggerberg and city-located sites. An important aspect of the new center is the unique opportunity for ETH Zurich students to pursue their research in close collaboration with an industrial partner, which is an important asset in ETH Zurich's engineering education.

Key technology of the 21st century

Today numerous products based on nanotechnology are on the market already, and many more are being developed. Nanotechnology defines a technology that utilizes functions at an extraordinarily small-size scale. It focuses on structures and processes in dimensions below 100 nanometers - approximately 400 times thinner than a human hair. At the scale of nanometers, many fundamental processes of biology, chemistry and physics occur and can be controlled in unprecedented ways, offering astonishing new perspectives in many disciplines.

Nanotechnology is an enabling technology which is expected to spark advances in vari-ous fields. These include advanced functional materials, nanoelectronics, information and communication technology, sensing, tools, healthcare and life sciences, and energy technology. In particular, nanotech applications in the energy sector, such as more effi-cient use of solar energy, or new ways of water treatment, might even help to tackle some of the biggest challenges of our time.
With its research at ETH Zurich and the IBM Zurich Research Lab, Zurich is one of the hotspots of quantum mechanics and nano research. And this is so for an excellent rea-son: ground breaking concepts in quantum mechanics have been formulated by ETH physicist and Nobel Laureate, Wolfgang Pauli. Gerhard Binning and Heinrich Rohrer received the Nobel Prize in Physics in 1986 for the development of the scanning tunnel-ing microscope at the IBM Zurich Research Lab. This instrument allowed the first look into the world of atoms, thus throwing the door to nanotechnology research wide open. A lot of potential nevertheless still remains to be unlocked. With the new lab, ETH Zurich and ZRL are determined to bring nanotechnology to the next level.

####

Copyright © ETH Zurich and the IBM Zurich Research Laboratory (ZRL)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Canatu Launches CNB In-Mold Film for Transparent Touch on 3D Surfaces –in Cars, Household Appliances, Wearables, Portables November 20th, 2014

Sustainable Nanotechnologies Project November 20th, 2014

Quantum mechanical calculations reveal the hidden states of enzyme active sites November 20th, 2014

UO-industry collaboration points to improved nanomaterials: University of Oregon microscope puts spotlight on the surface structure of quantum dots for designing new solar devices November 20th, 2014

Laboratories

NRL Scientists Discover Novel Metamaterial Properties within Hexagonal Boron Nitride November 20th, 2014

Brookhaven Science Associates Awarded Brookhaven Lab Management Contract Battelle/Stony Brook University partnership retains contract it has held since 1998 November 13th, 2014

SUNY Poly Student Awarded Fellowship with the U.S. Department of Energy's Postgraduate Research Program: Ph.D. Candidate Accepts Postmaster's Appointment To Conduct Research At Albany NanoTech Complex November 13th, 2014

Energy Department Awards New Contract to Manage and Operate Brookhaven National Laboratory November 12th, 2014

Announcements

Purdue 3-D printing innovation capable of making stronger, lighter metal works for auto, aerospace industries November 20th, 2014

Leica Microsystems Presents Universal Hybrid Detector for Single Molecule Detection and Imaging at SfN and ASCB: Leica HyD SMD - the Optimal Detector for Precise and Reliable SMD data November 20th, 2014

Silver Nanoparticles Produced in Iran from Forest Plants Extract November 20th, 2014

Nano Sorbents Able to Remove Pollutions Caused by Oil Derivatives November 20th, 2014

Alliances/Partnerships/Distributorships

UO-industry collaboration points to improved nanomaterials: University of Oregon microscope puts spotlight on the surface structure of quantum dots for designing new solar devices November 20th, 2014

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Field-emission plug-and-play solution for microwave electron guns: To simplify the electron emission mechanism involved in microwave electron guns, a team of researchers has created and demonstrated a field-emission plug-and-play solution based on ultrananocrystalline diamond November 18th, 2014

VDMA Electronics Production Equipment: Growth track for 2014 and 2015 confirmed: Business climate survey shows robust industry sector November 14th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More












ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE