Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Gene silencer and quantum dots reduce protein production to a whisper

 Xiaohu Gao, University of Washington
Each of these jars of water contains the same substance. The difference is the size of the particles. Quantum dots, suspended in liquid, absorb white light and then reemit it in a specific color that depends on the particle's size. Each quantum dot is about one ten-millionth of an inch in diameter and is composed of a few hundred atoms of material.
Xiaohu Gao, University of Washington
Each of these jars of water contains the same substance. The difference is the size of the particles. Quantum dots, suspended in liquid, absorb white light and then reemit it in a specific color that depends on the particle's size. Each quantum dot is about one ten-millionth of an inch in diameter and is composed of a few hundred atoms of material.

Abstract:
More than 15 years ago scientists discovered a way to stop a particular gene in its tracks. The Nobel Prize-winning finding holds tantalizing promise for medical science, but so far it has been difficult to apply the technique, known as RNA interference, in living cells.

Gene silencer and quantum dots reduce protein production to a whisper

Seattle, WA | Posted on June 23rd, 2008

Now scientists at the University of Washington in Seattle and Emory University in Atlanta have succeeded in using nanotechnology known as quantum dots to address this problem. Their technique is 10 to 20 times more effective than existing methods for injecting the gene-silencing tools, known as siRNA, into cells.

"We believe this is going to make a very important impact to the field of siRNA delivery," said Xiaohu Gao, a UW assistant professor of bioengineering and co-author of a study published online this week in the Journal of the American Chemical Society.

"This work helps to overcome the longstanding barrier in the siRNA field: How to achieve high silencing efficiency with low toxicity," said co-author Shuming Nie, a professor in the Wallace H. Coulter Department of Biomedical Engineering, jointly affiliated with the Georgia Institute of Technology and Emory University.

Other co-authors are Maksym Yezhelyev and Ruth O'Regan at Emory and Lifeng Qi at the UW.

Short pieces of RNA, the working copy of DNA, can disable production of a protein by silencing, or deactivating, a stretch of genetic code. Research laboratories regularly use the technique to figure out what a particular gene does. In the body, RNA interference could be used to treat conditions ranging from breast cancer to deteriorating eyesight.

The recent experiments used quantum dots, fluorescent balls of semiconductor material just six nanometers across (lining up 9,000 dots end to end would equal the width of a human hair). Quantum dots' unique optical properties cause them to emit light of different colors depending on their size. The dots are being developed for cellular imaging, solar cells and light-emitting diodes.

This paper describes one of the first applications of quantum dots to drug delivery.

Each quantum dot was surrounded by a proton sponge that carried a positive charge. Without any quantum dots attached, the siRNA's negative charge would prevent it from penetrating a cell's wall. With the quantum-dot chaperone, the more weakly charged siRNA complex crosses the cellular wall, escapes from the endosome (a fatty bubble that surrounds incoming material) and accumulates in the cellular fluid, where it can do its work disrupting protein manufacture.

Key to the newly published approach is that researchers can adjust the chemical makeup of the quantum dot's proton-sponge coating, allowing the scientists to precisely control how tightly the dots attach to the siRNA.

Quantum dots were dramatically better than existing techniques at stopping gene activity. In experiments, a cell's production of a test protein dropped to 2 percent when siRNA was delivered with quantum dots. By contrast, the test protein was produced at 13 percent to 51 percent of normal levels when the siRNA was delivered with one of three commercial reagents, or reaction-causing substances, now commonly used in laboratories.

Central to the finding is that fluorescent quantum dots allow scientists to watch the siRNA's movements. Previous siRNA trackers gave off light for less than a minute, while quantum dots, developed for imaging, emit light for hours at a time. In the experiments the authors were able to watch the process for many hours to track the gene-silencer's path.

The new approach is also five to 10 times less toxic to the cell than existing chemicals, meaning the quantum dot chaperones are less likely to harm cells. The ideal delivery vehicle would have no effect; the only biological change would be siRNA blocking cells' production of an unwanted protein.

The exact reason that the quantum dots were more effective than previous techniques is, however, still a mystery.

"We believe the improvement is caused by the endosome escape, and the ability of the quantum dots to separate from the siRNA," Gao said.

Quantum dots are not yet approved for use in humans. The authors are now transferring their techniques to particles of iron oxide, several types of which have been approved by the Food and Drug Administration for use in humans. They are also working to target cancer cells by attaching to specific markers on the cells' surface.

"Looking forward, this work will have important implications in in-vivo siRNA therapeutics, which will require the use of nontoxic iron oxide and biodegradable polymeric carriers rather than quantum dots," Nie said.

The research was funded by grants from the National Institutes of Health, the National Science Foundation and the Georgia Cancer Coalition.

####

For more information, please click here

Contacts:
Gao
(206) 543-6562


Nie
(404) 712-8595
(404) 727-0391

Copyright © University of Washington

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Researchers peer into atom-sized tunnels in hunt for better battery: May improve lithium ion for larger devices, like cars December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Exotic insulator may hold clue to key mystery of modern physics: Johns Hopkins-led research shows material living between classical and quantum worlds December 8th, 2016

Nanomedicine

Arrowhead Pharmaceuticals to Webcast Fiscal 2016 Year End Results December 7th, 2016

Fast, efficient sperm tails inspire nanobiotechnology December 5th, 2016

Journal Nanotechnology Progress International (JONPI) Volume 6, issue 2 coming out soon! December 5th, 2016

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Discoveries

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Researchers peer into atom-sized tunnels in hunt for better battery: May improve lithium ion for larger devices, like cars December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Exotic insulator may hold clue to key mystery of modern physics: Johns Hopkins-led research shows material living between classical and quantum worlds December 8th, 2016

Announcements

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Researchers peer into atom-sized tunnels in hunt for better battery: May improve lithium ion for larger devices, like cars December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Exotic insulator may hold clue to key mystery of modern physics: Johns Hopkins-led research shows material living between classical and quantum worlds December 8th, 2016

Quantum Dots/Rods

Trickling electrons: Close to absolute zero, the particles exhibit their quantum nature November 10th, 2016

Notre Dame researchers find transition point in semiconductor nanomaterials September 6th, 2016

Quantum dots with impermeable shell: A powerful tool for nanoengineering August 12th, 2016

Diamond-based light sources will lay a foundation for quantum communications of the future: Electrified quantum diamond can become the heart of quantum networks and computers of the future August 7th, 2016

Nanobiotechnology

Arrowhead Pharmaceuticals to Webcast Fiscal 2016 Year End Results December 7th, 2016

Fast, efficient sperm tails inspire nanobiotechnology December 5th, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Nanobiotix Provides Update on Global Development of Lead Product NBTXR3: Seven clinical trials across the world: More than 2/3 of STS patients recruited in the “act.in.sarc” Phase II/III trial: Phase I/II prostate cancer trial now recruiting in the U.S. November 28th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project