Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > A breakthrough in glass

A close look at a colloidal gel.
Photo by Paddy Royall
A close look at a colloidal gel.
Photo by Paddy Royall

Abstract:
Imagine a plane that has wings made out of glass. Thanks to a major breakthrough in understanding the nature of glass by scientists at the University of Bristol, this has just become a possibility.

A breakthrough in glass

UK | Posted on June 22nd, 2008

Despite its solid appearance, glass is actually a ‘jammed' state of matter that moves very slowly. Like cars in a traffic jam, atoms in a glass can't reach their destination because the route is blocked by their neighbours, so it never quite becomes a ‘proper' solid.

For more than 50 years most scientists have tried to understand just what glass is. Work so far has concentrated on trying to understand the traffic jam, but now Dr Paddy Royall from the University of Bristol, with colleagues in Canberra and Tokyo, has shown that the problem really lies with the destination, not with the traffic jam.

Publishing today (22 June 2008) in Nature Materials, the team has revealed that glass ‘fails' to be a solid due to the special atomic structures that form in a glass when it cools (ie, when the atoms arrive at their destination).

Royall explained: "Some materials crystallize as they cool, arranging their atoms into a highly regular pattern called a lattice. But although glass ‘wants' to be a crystal, as it cools the atoms become jammed in a nearly random arrangement, preventing it from forming a regular lattice.

"Back in the 1950s, Sir Charles Frank in the Physics Department at Bristol University suggested that the arrangement of the ‘jam' should form what is known as an icosahedron, but at the time he was unable to provide experimental proof. We set out to see if he was right."

The problem is you can't watch what happens to atoms as they cool because they are just too small. So using special particles called colloids that mimic atoms, but are just large enough to be visible using state-of-the-art microscopy, Royall cooled some down and watched what happened.

What he found was that the gel these particles formed also ‘wants' to be a crystal, but it fails to become one due to the formation of icosahedra-like structures - exactly as Frank had predicted 50 years ago. It is the formation of these structures that underlie jammed materials and explains why a glass is a glass and not a liquid - or a solid.

Knowing the structure formed by atoms as a glass cools represents a major breakthrough in our understanding of meta-stable materials and will allow further development of new materials such as metallic glasses.

Metals normally crystallize when they cool, unfortunately stress builds up along the boundaries between crystals, which leads to metal failure. For example, the world's first jetliner, the British built De Havilland Comet, fell out of the sky due to metal failure. If a metal could be made to cool with the same internal structure as a glass and without crystal grain boundaries, it would be less likely to fail.

Metallic glasses could be suitable for a whole range of products that need to be flexible such as aircraft wings, golf clubs and engine parts.

####

For more information, please click here

Contacts:
Cherry Lewis

Copyright © University of Bristol

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Renishaw receives Queen's Award for spectroscopy developments November 25th, 2014

JPK reports on the use of AFM and the CellHesion module to study plant cells at the University of Queensland November 25th, 2014

Vegetable oil ingredient key to destroying gastric disease bacteria: In mice, therapeutic nanoparticles dampen H. pylori bacteria and inflammation that lead to ulcers and gastric cancer November 25th, 2014

Research yields material made of single-atom layers that snap together like Legos November 25th, 2014

Discoveries

Lawrence Livermore researchers develop efficient method to produce nanoporous metals November 25th, 2014

Vegetable oil ingredient key to destroying gastric disease bacteria: In mice, therapeutic nanoparticles dampen H. pylori bacteria and inflammation that lead to ulcers and gastric cancer November 25th, 2014

Research yields material made of single-atom layers that snap together like Legos November 25th, 2014

Blu-ray disc can be used to improve solar cell performance: Data storage pattern transferred to solar cell increases light absorption November 25th, 2014

Materials/Metamaterials

Lawrence Livermore researchers develop efficient method to produce nanoporous metals November 25th, 2014

Research yields material made of single-atom layers that snap together like Legos November 25th, 2014

Aromatic food chemistry to the making of copper nanowires November 24th, 2014

Novel Method Found for Connection of Metallic Alloys to Polymers November 23rd, 2014

Announcements

Renishaw receives Queen's Award for spectroscopy developments November 25th, 2014

JPK reports on the use of AFM and the CellHesion module to study plant cells at the University of Queensland November 25th, 2014

Vegetable oil ingredient key to destroying gastric disease bacteria: In mice, therapeutic nanoparticles dampen H. pylori bacteria and inflammation that lead to ulcers and gastric cancer November 25th, 2014

Research yields material made of single-atom layers that snap together like Legos November 25th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More












ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE