Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Chemistry professor achieves nanotechnology breakthrough

 Fotios Papadimitrakopoulos, professor of chemistry.
Photo by Daniel Buttrey
Fotios Papadimitrakopoulos, professor of chemistry.
Photo by Daniel Buttrey

Abstract:
A chemistry professor in the College of Liberal Arts and Sciences and his graduate students have published new results in Nature Nanotechnology showing how they isolated a particular type of carbon nanotube from a sample and manipulated it in a way that could have broad applicability in drug and gene delivery, electronic devices, and nanotechnology research.

Chemistry professor achieves nanotechnology breakthrough

Storrs, CT | Posted on June 20th, 2008

Fotios Papadimitrakopoulos and his graduate students found a way for a biological molecule, a form of vitamin B2, to wrap around a single-walled carbon nanotube - a tube so small that it has the highest curvature on earth.

Wrapping a carbon nanotube was a difficult achievement and instrumental to their research, since it was a step that eventually enabled them to isolate a particular type of nanotube from a sample that contained 50 different kinds.

Papadimitrakopoulos has spent seven years investigating how to efficiently separate the various nanotubes in a sample into like types.

Nanotubes that are alike can be interlocked to create a material that is extremely strong, even if each nanotube is as small as one micron.

Homogenous nanotubes also have the same electrical and optical properties, and they form a material that is extremely pure.

The research opens the possibility of wrapping nanotubes with proteins or other molecules, which would be useful in a variety of applications.

"We have learned how to manipulate this molecule," says Papadimitrakopoulos.

The lead author of the Nature Nanotechnology paper is Sang-Young Ju, a polymer science Ph.D. candidate in his fifth year of study. Other authors are Jonathan Doll, a fourth-year polymer science Ph.D. student, and Ity Sharma, a second-year chemistry Ph.D. candidate.

Two undergraduates, William Kopcha, CLAS '08, a chemistry major, and Christopher Badalucco, a junior majoring in physiology and neurobiology, also were involved in the research.

The researchers worked with single-walled carbon nanotubes formed from graphene. If you drag a pencil across paper, Papadimitrakopoulos says, you leave thousands of graphene "seeds" behind, a deposit from the friction of the graphite pencil tip against the paper.

At the molecular level, graphene seeds look like a honeycomb. If you form these graphene sheets into a tube, they can become the basis of single-walled carbon nanotubes.

Getting another material to wrap around them was the next challenge.

The researchers discovered that the vitamin B2 molecule stitches itself into a ribbon, using soft hydrogen bonds, and seamlessly wraps itself around the carbon nanotube. The ribbon, in a sense, acted as a detergent, dispersing the oil-loving nanotube in water.

"Nobody has shown this before," says Papadimitrakopoulos.

By introducing a second detergent, they managed to destabilize the ribbon, breaking its hydrogen bonds and leaving the second detergent in its place.
Fotios Papadimitrakopoulos, professor of chemistry.
Fotios Papadimitrakopoulos, professor of chemistry.
Photo by Daniel Buttrey

Varying the concentration of the second detergent allowed them to separate nanotubes that had a given chirality, or pitch.

Identifying carbon nanotubes of like chirality, or pitch, has important implications.

If the chirality is the same, the nanotubes have the potential to interlock themselves in a hexagonal pattern and create an extremely strong material, even if the nanotubes are not very long.

Papadimitrakopoulos says that this is an important step toward minimizing the potential negative health impact of carbon nanotubes, which recently were associated with asbestos-like contamination in the lung linings of laboratory animals.

In that recent study, it was shown that carbon nanotubes larger than 20 microns behaved like asbestos, while those smaller than 20 microns could be cleared out of the lungs, much like pollen.

The carbon nanotubes that his research group works on are far smaller, at approximately one-micron in length.

Carbon nanotubes began to receive widespread attention in 1991, but it is only in the past 10 years or so that research on their applications has heated up.

Nanotubes are small, strong, and special because of their potential for use in drug delivery and electronics applications.

Some have described carbon nanotubes as the reigning celebrities of the advanced materials world. Papadimitrakopoulos describes them as the "Cinderella" molecules of nanotechnology.

Hydrocarbons can be burned and still be used to make strong materials, he notes. Carbon is inexpensive, and carbon nanotubes can transform products, making stronger tennis rackets or bullet-proof vests, for example.

The Air Force, which funds his research, is interested in advanced materials that are light, strong, and can withstand high temperatures, he says. In the future, he predicts, planes will be made from carbon nano-fibers.

Papadimitrakopoulos is a chemistry professor in CLAS, but his work is interdisciplinary, involving physics as well. He also serves as the associate director of the Institute of Materials Science and is a member of the Polymer Program.

Papadimitrakopoulos says his research could not have proceeded without the use of a high resolution transmission electron microscope, which allowed his research group to confirm and verify visually that the B2 molecule was wrapping around the carbon nanotube.

####

For more information, please click here

Contacts:
University of Connecticut
Storrs, CT 06269
(860) 486-2000

Copyright © University of Connecticut

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New Absorber Will Lead to Better Biosensor: Biosensors are more sensitive and able to detect smaller changes in the environment October 1st, 2014

Graphene chips are close to significant commercialization October 1st, 2014

Production of Filters for Separation of Water from Petroleum Products in Iran October 1st, 2014

Yale University and Leica Microsystems Partner to Establish Microscopy Center of Excellence: Yale Welcomes Scientists to Participate in Core Facility Opening and Super- Resolution Workshops October 20 Through 31, 2014 September 30th, 2014

Govt.-Legislation/Regulation/Funding/Policy

NREL Announces New Center Directors to lead R&D, Analysis Efforts September 30th, 2014

A Heartbeat Away? Hybrid "Patch" Could Replace Transplants: TAU researcher harnesses gold nanoparticles to engineer novel biocompatible cardiac patch September 30th, 2014

How things coil: Researchers discover that simulation technology designed for Hollywood can be used as a predictive tool for understanding fundamental engineering problems September 29th, 2014

UT Arlington researchers develop transparent nanoscintillators for radiation detection for medical safety and homeland security September 29th, 2014

Chip Technology

Graphene chips are close to significant commercialization October 1st, 2014

Speed at its limits September 30th, 2014

Research mimics brain cells to boost memory power September 30th, 2014

'Pixel' engineered electronics have growth potential: Rice, Oak Ridge, Vanderbilt, Penn scientists lead creation of atom-scale semiconducting composites September 29th, 2014

Nanotubes/Buckyballs

Elsevier Publishes New Content on Graphene and Materials Science: Books Discuss Properties and Emerging Applications of Carbon Nanotubes, Graphene and Nanomaterials September 25th, 2014

Future flexible electronics based on carbon nanotubes: Study in Applied Physics Letters show how to improve nanotube transistor and circuit performance with fluoropolymers September 23rd, 2014

Nanotubes help healing hearts keep the beat: Rice University, Texas Childrenís Hospital patch for defects enhances electrical connections between cells September 23rd, 2014

SouthWest NanoTechnologies (SWeNT) Receives NIST Small Business Innovation Research (SBIR) Phase 1 Award to Produce Greater than 99% Semiconducting Single-Wall Carbon Nanotubes September 19th, 2014

Nanomedicine

New Absorber Will Lead to Better Biosensor: Biosensors are more sensitive and able to detect smaller changes in the environment October 1st, 2014

Speed at its limits September 30th, 2014

Ad-REIC vaccine: A magic bullet for cancer treatment September 30th, 2014

New Topical Hemostatic Agent: Neutral Self-Assembling Peptide Hydrogel September 30th, 2014

Nanoelectronics

Grenoble Hosting SEMICON Europa Oct. 7-9, First Time Event Held in France: Letiís 90-square-meter Booth Will Feature Portable Showroom To Demonstrate New Technology Innovations September 24th, 2014

SouthWest NanoTechnologies (SWeNT) Receives NIST Small Business Innovation Research (SBIR) Phase 1 Award to Produce Greater than 99% Semiconducting Single-Wall Carbon Nanotubes September 19th, 2014

Rice rolls 'neat' nanotube fibers: Rice University researchers' acid-free approach leads to strong conductive carbon threads September 15th, 2014

Excitonic Dark States Shed Light on TMDC Atomic Layers: Berkeley Lab Discovery Holds Promise for Nanoelectronic and Photonic Applications September 11th, 2014

Discoveries

New Absorber Will Lead to Better Biosensor: Biosensors are more sensitive and able to detect smaller changes in the environment October 1st, 2014

Production of Filters for Separation of Water from Petroleum Products in Iran October 1st, 2014

Ad-REIC vaccine: A magic bullet for cancer treatment September 30th, 2014

New Topical Hemostatic Agent: Neutral Self-Assembling Peptide Hydrogel September 30th, 2014

Announcements

New Absorber Will Lead to Better Biosensor: Biosensors are more sensitive and able to detect smaller changes in the environment October 1st, 2014

Graphene chips are close to significant commercialization October 1st, 2014

Production of Filters for Separation of Water from Petroleum Products in Iran October 1st, 2014

Chemical interactions between silver nanoparticles and thiols: A comparison of mercaptohexanol again September 30th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE