Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > SRC-Supported Stanford Researchers Overcome Mispositioned Carbon Nanotubes to Create Logic Circuits at Wafer-Scale

Abstract:
Taming of Unruly CNTs, Demonstration of Full Wafer-Scale Growth, Transfer and Integration Are Steps Toward Making Nanotube Circuits Commercially Viable

SRC-Supported Stanford Researchers Overcome Mispositioned Carbon Nanotubes to Create Logic Circuits at Wafer-Scale

Research Triangle Park, NC | Posted on June 20th, 2008

Semiconductor Research Corporation (SRC), the world's leading university-research consortium for semiconductors and related technologies, today joined with researchers at Stanford University to announce multiple ‘firsts' demonstrated with carbon nanotubes (CNTs) to produce CMOS-compatible working circuits on a wafer scale. CNT Field-effect Transistors (FETs) are considered contenders for extending current CMOS technology to create higher-level chip capability.

The research is funded by the Focus Center Research Program (FCRP), a subsidiary of SRC.

Efforts to perfect CNT technology to the point necessary to be considered for affordable and practical application in computer chips have been underway since the first CNT transistor was demonstrated one decade ago.

The Stanford research presented yesterday at the 2008 Symposia on VLSI Circuits and Technology in Honolulu, Hawaii, has yielded progress toward this goal that includes:

-- Demonstration of full-wafer-scale growth of directional CNTs on single-crystal quartz wafers;

-- Demonstration of full-wafer-scale CNT transfer from quartz wafers to silicon wafers for integration on silicon;

-- Fabrication of logic structures that are immune to mispositioning of CNTs. These complex logic structures include NAND, NOR, AND-OR-INVERT and OR-AND-INVERT on a full-wafer-scale.

The accomplishments are rooted in the Stanford team's invention of a design technique that creates logic cells which function correctly even in the presence of mispositioned CNTs.

"At the nanoscale, it's nearly impossible to guarantee that all carbon nanotubes will be placed at correct positions and aligned to create a functional circuit. So the question is: if we can't control these layout requirements, how can we create working circuits?" noted Betsy Weitzman, director of the FCRP. "This exciting research has brought forward a significant breakthrough for the application of CNTs in CMOS circuits -- very efficient and effective design solutions that don't require super-precise placement of the CNTs. The Stanford researchers developed an inexpensive design flow that is compatible with CMOS processing and have demonstrated that their designs can be fabricated at VLSI scale. This can clearly facilitate a breakthrough for future CMOS chip technologies."

Progress from the research could benefit chipmakers and their customers who need more advanced chips for communications, computing, security, automotive and consumer electronics, and a wide range of other applications that are dependent on silicon chip performance.

"This is the first time that anyone has experimentally demonstrated that it is possible to fabricate robust, imperfection-immune CNT-based circuits at full wafer-scale without paying the price of expensive defect and fault-tolerance techniques," said Professor Subhasish Mitra of Stanford. "The fact that these techniques are compatible with VLSI processing and have minimal impact on VLSI design flows can contribute significantly to continued advancement of Moore's Law."

Joining Professor Mitra in the research are Stanford engineering students Nishant Patil and Albert Lin, Stanford research staff member Edward Myers, and electrical engineering Professor H.-S. Philip Wong.

"Our progress potentially brings the academic and industrial communities an important step closer to the day when carbon nanotube technologies can supplement silicon CMOS technology as the technology of choice for the semiconductor industry," said Wong.

Per its charter, SRC-FCRP will continue to take a lead role in collaborating on enhancements to the academic research agenda for materials and processes associated with semiconductor manufacturing.

####

About Semiconductor Research Corporation (SRC)
Celebrating 26 years of collaborative research for the semiconductor industry, SRC defines industry needs, invests in and manages the research that gives its members a competitive advantage in the dynamic global marketplace. Awarded the National Medal of Technology, America’s highest recognition for contributions to technology, SRC expands the industry knowledge base and attracts premier students to help innovate and transfer semiconductor technology to the commercial industry.

For more information, please click here

Contacts:
SRC (Cardinal Communications)
Scott Stevens
+1-512-413-9540

Copyright © Business Wire 2008

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New microchip demonstrates efficiency and scalable design: Increased power and slashed energy consumption for data centers August 24th, 2016

Tunneling nanotubes between neurons enable the spread of Parkinson's disease via lysosomes August 24th, 2016

New flexible material can make any window 'smart' August 23rd, 2016

University of Puerto Rico and NASA back in the news – XEI reports August 23rd, 2016

Chip Technology

New microchip demonstrates efficiency and scalable design: Increased power and slashed energy consumption for data centers August 24th, 2016

New theory could lead to new generation of energy friendly optoelectronics: Researchers at Queen's University Belfast and ETH Zurich, Switzerland, have created a new theoretical framework which could help physicists and device engineers design better optoelectronics August 23rd, 2016

Down to the wire: ONR researchers and new bacteria August 18th, 2016

Hexagonal boron nitride semiconductors enable cost-effective detection of neutron signals: Texas Tech University researchers demonstrate hexagonal boron nitride semiconductors as a cost-effective alternative for inspecting overseas cargo containers entering US ports August 17th, 2016

Nanoelectronics

New microchip demonstrates efficiency and scalable design: Increased power and slashed energy consumption for data centers August 24th, 2016

Down to the wire: ONR researchers and new bacteria August 18th, 2016

Smarter self-assembly opens new pathways for nanotechnology: Brookhaven Lab scientists discover a way to create billionth-of-a-meter structures that snap together in complex patterns with unprecedented efficiency August 9th, 2016

Magnetic atoms arranged in neat rows: FAU physicists enable one-dimensional atom chains to grow August 5th, 2016

Discoveries

New microchip demonstrates efficiency and scalable design: Increased power and slashed energy consumption for data centers August 24th, 2016

Tunneling nanotubes between neurons enable the spread of Parkinson's disease via lysosomes August 24th, 2016

New theory could lead to new generation of energy friendly optoelectronics: Researchers at Queen's University Belfast and ETH Zurich, Switzerland, have created a new theoretical framework which could help physicists and device engineers design better optoelectronics August 23rd, 2016

New flexible material can make any window 'smart' August 23rd, 2016

Announcements

New microchip demonstrates efficiency and scalable design: Increased power and slashed energy consumption for data centers August 24th, 2016

Tunneling nanotubes between neurons enable the spread of Parkinson's disease via lysosomes August 24th, 2016

New flexible material can make any window 'smart' August 23rd, 2016

University of Puerto Rico and NASA back in the news – XEI reports August 23rd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic