Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Gas, gas, quick boys

Abstract:
TERRORISM is most commonly associated with the bomb and the bullet, but ever since an incident on the Tokyo subway system in 1995, the security services have also had to worry about poison gas.

That attack, which used a nerve-gas called sarin, killed 12 people and severely injured another 50. Sarin is to be feared because it is invisible, odourless and 500 times more deadly than cyanide. However, other gases (not least cyanide itself) could be used instead. What is needed is a cheap way of detecting such gases and, having raised the alarm, of identifying which gas is involved so that anyone who has succumbed can be treated.

And that is what a team of chemical engineers at the Massachusetts Institute of Technology, led by Michael Strano (pictured on the left), think they have created. Not only can their new sensor tell between chemical agents, it can detect them at previously unattainable concentrations—as low as 25 parts in a trillion.

The core of Dr Strano's invention, which he describes in Angewandte Chemie, is an array of treated carbon nanotubes. Each is, in essence, a layer of carbon atoms that has been coated with nitrogen-containing molecules called amines and rolled into a cylinder with the amines on the outside. Individual tubes, which are about 1/50,000 of the width of a human hair in diameter, are arranged so that they run between pairs of tiny electrodes. When the device is switched on the nanotubes carry an electric current with a power of about 300 microwatts.

The gases to be analysed reach the nanotubes through a miniature column etched onto a silicon chip. As they pass along this column they tend to stick to its sides. Some gases stick more than others, and hence travel more slowly down the column. In this way the components of the sample separate from one another. Each component is puffed onto the nanotubes, where it sticks to the carbon atoms. This, in turn, causes the conductivity of the nanotubes to change—how much is a characteristic of each gas.


Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanofiltration Membrane Market 2015 - Global Industry Survey, Analysis, Size, Share, Outlook and Forecast to 2020 July 31st, 2015

Nanozirconia Market 2015 - Global Industry Survey, Analysis, Size, Share, Outlook and Forecast to 2020 July 31st, 2015

Self-Healing Nano Anti-rust Coatings Market 2015 - Global Industry Survey, Analysis, Size, Share, Outlook and Forecast to 2020 July 31st, 2015

Nano Spray Instrument Market 2015 - Global Industry Survey, Analysis, Size, Share, Outlook and Forecast to 2020 July 31st, 2015

Sensors

Controlling Dynamic Behavior of Carbon Nanosheets in Structures Made Possible July 30th, 2015

Non-Enzyme Sensor Determines Level of Blood Sugar July 29th, 2015

American Chemical Society expands reach to include rapidly emerging area of sensor science July 25th, 2015

UT Dallas nanotechnology research leads to super-elastic conducting fibers July 24th, 2015

Announcements

Nano Spray Instrument Market 2015 - Global Industry Survey, Analysis, Size, Share, Outlook and Forecast to 2020 July 31st, 2015

Nanocellulose Market 2015 - Global Industry Survey, Analysis, Size, Share, Outlook and Forecast to 2020 July 31st, 2015

Heating and cooling with light leads to ultrafast DNA diagnostics July 31st, 2015

Theoretical Physicists at Freie Universität Berlin Develop New Insights into Interface between Classical and Quantum Worlds July 31st, 2015

Homeland Security

Nanopaper as an optical sensing platform July 23rd, 2015

Iranian Scientists Design Nano Device to Detect Cyanogen Toxic Gas June 23rd, 2015

New sensing tech could help detect diseases, fraudulent art, chemical weapons June 1st, 2015

UCLA nanoscientists are first to model atomic structures of three bacterial nanomachines: Cryo electron microscope enables scientists to explore the frontiers of targeted antibiotics April 21st, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project