Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > Gas, gas, quick boys

Abstract:
TERRORISM is most commonly associated with the bomb and the bullet, but ever since an incident on the Tokyo subway system in 1995, the security services have also had to worry about poison gas.

That attack, which used a nerve-gas called sarin, killed 12 people and severely injured another 50. Sarin is to be feared because it is invisible, odourless and 500 times more deadly than cyanide. However, other gases (not least cyanide itself) could be used instead. What is needed is a cheap way of detecting such gases and, having raised the alarm, of identifying which gas is involved so that anyone who has succumbed can be treated.

And that is what a team of chemical engineers at the Massachusetts Institute of Technology, led by Michael Strano (pictured on the left), think they have created. Not only can their new sensor tell between chemical agents, it can detect them at previously unattainable concentrations—as low as 25 parts in a trillion.

The core of Dr Strano's invention, which he describes in Angewandte Chemie, is an array of treated carbon nanotubes. Each is, in essence, a layer of carbon atoms that has been coated with nitrogen-containing molecules called amines and rolled into a cylinder with the amines on the outside. Individual tubes, which are about 1/50,000 of the width of a human hair in diameter, are arranged so that they run between pairs of tiny electrodes. When the device is switched on the nanotubes carry an electric current with a power of about 300 microwatts.

The gases to be analysed reach the nanotubes through a miniature column etched onto a silicon chip. As they pass along this column they tend to stick to its sides. Some gases stick more than others, and hence travel more slowly down the column. In this way the components of the sample separate from one another. Each component is puffed onto the nanotubes, where it sticks to the carbon atoms. This, in turn, causes the conductivity of the nanotubes to change—how much is a characteristic of each gas.


Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Borrowing from pastry chefs, engineers create nanolayered composites: Method to stack hundreds of nanoscale layers could open new vistas in materials science July 25th, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Accurate design of large icosahedral protein nanocages pushes bioengineering boundaries: Scientists used computational methods to build ten large, two-component, co-assembling icosahedral protein complexes the size of small virus coats July 25th, 2016

XEI Scientific Partners with Electron Microscopy Sciences to Promote and Sell its Products in North and South America July 25th, 2016

Sensors

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Electron 'spin control' of levitated nanodiamonds could bring advances in sensors, quantum information processing July 20th, 2016

Easier, faster, cheaper: A full-filling approach to making nanotubes of consistent quality: Approach opens a straightforward route for engineering the properties of single-wall carbon nanotubes July 19th, 2016

Researchers invent 'smart' thread that collects diagnostic data when sutured into tissue: Advances could pave way for new generation of implantable and wearable diagnostics July 18th, 2016

Announcements

Borrowing from pastry chefs, engineers create nanolayered composites: Method to stack hundreds of nanoscale layers could open new vistas in materials science July 25th, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Accurate design of large icosahedral protein nanocages pushes bioengineering boundaries: Scientists used computational methods to build ten large, two-component, co-assembling icosahedral protein complexes the size of small virus coats July 25th, 2016

XEI Scientific Partners with Electron Microscopy Sciences to Promote and Sell its Products in North and South America July 25th, 2016

Homeland Security

New method can identify chemical warfare agents more easily: The method could help governments protect people from horrifying toxic effects July 15th, 2016

Researchers harness DNA as the engine of super-efficient nanomachine: New platform detects traces of everything from bacteria to viruses, cocaine and metals July 10th, 2016

Electronic nose smells pesticides and nerve gas July 6th, 2016

Wireless, wearable toxic-gas detector: Inexpensive sensors could be worn by soldiers to detect hazardous chemical agents July 4th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic