Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Gas, gas, quick boys

Abstract:
TERRORISM is most commonly associated with the bomb and the bullet, but ever since an incident on the Tokyo subway system in 1995, the security services have also had to worry about poison gas.

That attack, which used a nerve-gas called sarin, killed 12 people and severely injured another 50. Sarin is to be feared because it is invisible, odourless and 500 times more deadly than cyanide. However, other gases (not least cyanide itself) could be used instead. What is needed is a cheap way of detecting such gases and, having raised the alarm, of identifying which gas is involved so that anyone who has succumbed can be treated.

And that is what a team of chemical engineers at the Massachusetts Institute of Technology, led by Michael Strano (pictured on the left), think they have created. Not only can their new sensor tell between chemical agents, it can detect them at previously unattainable concentrations—as low as 25 parts in a trillion.

The core of Dr Strano's invention, which he describes in Angewandte Chemie, is an array of treated carbon nanotubes. Each is, in essence, a layer of carbon atoms that has been coated with nitrogen-containing molecules called amines and rolled into a cylinder with the amines on the outside. Individual tubes, which are about 1/50,000 of the width of a human hair in diameter, are arranged so that they run between pairs of tiny electrodes. When the device is switched on the nanotubes carry an electric current with a power of about 300 microwatts.

The gases to be analysed reach the nanotubes through a miniature column etched onto a silicon chip. As they pass along this column they tend to stick to its sides. Some gases stick more than others, and hence travel more slowly down the column. In this way the components of the sample separate from one another. Each component is puffed onto the nanotubes, where it sticks to the carbon atoms. This, in turn, causes the conductivity of the nanotubes to change—how much is a characteristic of each gas.


Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A compact, efficient single photon source that operates at ambient temperatures on a chip: Highly directional single photon source concept is expected to lead to a significant progress in producing compact, cheap, and efficient sources of quantum information bits for future appls May 3rd, 2016

Nuclear pores captured on film: Using an ultra fast-scanning atomic force microscope, researchers from the University of Basel have filmed 'living' nuclear pore complexes at work for the first time May 3rd, 2016

Little ANTs: Researchers build the world's tiniest engine May 3rd, 2016

An Experiment Seeks to Make Quantum Physics Visible to the Naked Eye May 3rd, 2016

Sensors

Quantum sensors for high-precision magnetometry of superconductors May 3rd, 2016

Making invisible physics visible: The Jayich Lab has created a new sensor technology that captures nanoscale images with high spatial resolution and sensitivity May 2nd, 2016

Electrically Conductive Graphene Ink Enables Printing of Biosensors April 23rd, 2016

Highlights from the Graphene Flagship April 22nd, 2016

Announcements

A compact, efficient single photon source that operates at ambient temperatures on a chip: Highly directional single photon source concept is expected to lead to a significant progress in producing compact, cheap, and efficient sources of quantum information bits for future appls May 3rd, 2016

Nuclear pores captured on film: Using an ultra fast-scanning atomic force microscope, researchers from the University of Basel have filmed 'living' nuclear pore complexes at work for the first time May 3rd, 2016

Little ANTs: Researchers build the world's tiniest engine May 3rd, 2016

An Experiment Seeks to Make Quantum Physics Visible to the Naked Eye May 3rd, 2016

Homeland Security

Team builds first quantum cascade laser on silicon: Eliminates the need for an external light source for mid-infrared silicon photonic devices or photonic circuits April 21st, 2016

Nanoporous material's strange "breathing" behavior April 7th, 2016

Sniffing out a dangerous vapor: University of Utah engineers develop material that can sense fuel leaks and fuel-based explosives March 28th, 2016

Detecting and identifying explosives with single test December 10th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic