Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > NIST/NIH Micromagnets Show Promise as Colorful ‘Smart Tags’ for Magnetic Resonance Imaging

Microscopic magnets (above left), designed and tested in a joint NIST/NIH project, might one day be injected into the body to add color and “smart tag” capability to magnetic resonance imaging for medical diagnosis and research. The image on the right shows light scattering from grids of magnets on a wafer where they were made using conventional microfabrication techniques.

Credit: G. Zabow, NIST/NIH
Microscopic magnets (above left), designed and tested in a joint NIST/NIH project, might one day be injected into the body to add color and “smart tag” capability to magnetic resonance imaging for medical diagnosis and research. The image on the right shows light scattering from grids of magnets on a wafer where they were made using conventional microfabrication techniques.

Credit: G. Zabow, NIST/NIH

Abstract:
Customized microscopic magnets that might one day be injected into the body could add color to magnetic resonance imaging (MRI), while also potentially enhancing sensitivity and the amount of information provided by images, researchers at the National Institute of Standards and Technology (NIST) and National Institutes of Health (NIH) report. The new micromagnets also could act as "smart tags" identifying particular cells, tissues, or physiological conditions, for medical research or diagnostic purposes.

NIST/NIH Micromagnets Show Promise as Colorful ‘Smart Tags’ for Magnetic Resonance Imaging

GAITHERSBURG, MD | Posted on June 18th, 2008

As described in the June 19 issue of Nature,* the NIST and NIH investigators have demonstrated the proof of principle for a new approach to MRI. Unlike the chemical solutions now used as image-enhancing contrast agents in MRI, the NIST/NIH micro-magnets rely on a precisely tunable feature—their physical shape—to adjust the radio-frequency (RF) signals used to create images. The RF signals then can be converted into a rainbow of optical colors by computer. Sets of different magnets designed to appear as different colors could, for example, be coated to attach to different cell types, such as cancerous versus normal. The cells then could be identified by tag color.

"Current MRI technology is primarily black and white. This is like a colored tag for MRI," says lead author Gary Zabow, who designed and fabricated the microtags at NIST and, together with colleagues at the National Institute of Neurological Disorders and Stroke, part of NIH, tested them on MRI machines.

The micromagnets also can be thought of as microscopic RF identification (RFID) tags, similar to those used for identifying and tracking objects from nationwide box shipments to food in the supermarket. The device concept is flexible and could have other applications such as in enabling RFID-based microscopic fluid devices (microfluidics) for biotechnology and handheld medical diagnostic toolkits.

The microtags would need extensive further engineering and testing, including clinical studies, before they could be used in people undergoing MRI exams. The magnets used in the NIST/NIH studies were made of nickel, which is toxic but was relatively easy to work with for the initial prototypes. But Zabow says they could be made of other magnetic materials, such as iron, which is considered non-toxic and is already approved for use in certain medical agents. Only very low concentrations of the magnets would be needed in the body to enhance MRI images.

Each micromagnet consists of two round, vertically stacked magnetic discs a few micrometers in diameter, separated by a small open gap in between. Researchers create a customized magnetic field for each tag by making it from particular materials and tweaking the geometry, perhaps by widening the gap between the discs or changing the discs' thickness or diameter. As water in a sample flows between the discs, protons acting like twirling bar magnets within the water's hydrogen atoms generate predictable RF signals—the stronger the magnetic field, the faster the twirling—and these signals are used to create images.

The open sandwich design allows the movement or diffusion of water through the micromagnet, producing a signal that may be thousands of times stronger than that produced by a similarly sized, but stationary, volume of water. The diffusion effectively increases local MRI sensitivity, which in a future clinical setting could lead to practical benefits such as faster imaging, images that are richer with information, or reduced dose requirements for these contrast agents. The NIST/NIH test results show that changing magnet geometry results in significant shifts in the frequency signals. Thanks to their physical attributes, the magnets can be designed to have more tunable properties than conventional injectable MRI contrast agents. MRI contrast agents enhance images by altering the magnetic field seen by hydrogen nuclei in water. Conventional contrast agents are chemically synthesized whereas the new micromagnets are microfabricated. This allows for greater control and range of the modified magnetic field, greatly enhancing sensitivity.

Furthermore, unlike the molecular chemical "soups" that make up many of the contrast agents, each micromagnet potentially could be individually detected for imaging purposes. The magnets also could be designed to be turned on and off by, for example, filling the gap between the discs to block water passage. The gap could be filled with something that dissolves when exposed to certain substances or conditions, Zabow says.

The micromagnets can be made using conventional microfabrication techniques and are compatible with standard MRI hardware. Advanced lithography techniques of the kind used to make sophisticated computer chips might be used to make the tags even smaller, approaching the nanometer scale, according to the paper.

The magnets could make medical diagnostic images as information-rich as the optical images of tissue samples now common in biotechnology, which already benefits from a variety of colored markers such as fluorescent proteins and tunable quantum dots.

NIH has filed a provisional patent application on the micromagnets.

NIH support for Zabow's work was funded by the National Institute of Biomedical Imaging and Bioengineering (NIBIB) through the NIST/NIH-NIBIB National Research Council Joint Associateship Program. The program seeks to recruit physicists into biomedical research in order to improve technologies like MRI.

####

About NIST
As a non-regulatory agency, NIST promotes U.S. innovation and industrial competitiveness by advancing measurement science, standards and technology in ways that enhance economic security and improve our quality of life.

The National Institutes of Health (NIH)—The Nation's Medical Research Agency—includes 27 institutes and centers and is a component of the U.S. Department of Health and Human Services. It is the primary federal agency for conducting and supporting basic, clinical and translational medical research, and it investigates the causes, treatments and cures for both common and rare diseases. For more information about NIH and its programs, visit www.nih.gov.

*G. Zabow, S. Dodd, J. Moreland, A. Koretsky. 2008. Micro-engineered local field control for high-sensitivity multispectral MRI. Nature. June 19.

For more information, please click here

Contacts:
Laura Ost, NIST
(303) 497-4880

Copyright © NIST

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Leti Will Demo World’s-first WVGA 10-µm Pitch GaN Microdisplays for Augmented Reality Video at Display Week in Los Angles: Invited Paper also Will Present Leti’s Success with New Augmented Reality Technology That Reduces Pixel Pitch to Less than 5 Microns May 22nd, 2017

Sensors detect disease markers in breath May 19th, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Imaging

Plasmon-powered upconversion nanocrystals for enhanced bioimaging and polarized emission: Plasmonic gold nanorods brighten lanthanide-doped upconversion superdots for improved multiphoton bioimaging contrast and enable polarization-selective nonlinear emissions for novel nanoscal May 19th, 2017

The brighter side of twisted polymers: Conjugated polymers designed with a twist produce tiny, brightly fluorescent particles with broad applications May 16th, 2017

UnitySC Announces Wafer Thinning Inspection System; Win from Power Semiconductor IDM for Automotive: Leading IDM Selects New 4See Series Automated Defect Inspection Platform for Power Semiconductor Automotive Applications May 11th, 2017

Three-dimensional Direction-dependent Force Measurement at the Subatomic Scale: International researchers led by Osaka University develop a microscopy technique to probe materials at the subatomic scale in multiple directions simultaneously May 11th, 2017

Nanomedicine

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Sensors detect disease markers in breath May 19th, 2017

Oddball enzyme provides easy path to synthetic biomaterials May 17th, 2017

The brighter side of twisted polymers: Conjugated polymers designed with a twist produce tiny, brightly fluorescent particles with broad applications May 16th, 2017

Discoveries

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Sensors detect disease markers in breath May 19th, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Plasmon-powered upconversion nanocrystals for enhanced bioimaging and polarized emission: Plasmonic gold nanorods brighten lanthanide-doped upconversion superdots for improved multiphoton bioimaging contrast and enable polarization-selective nonlinear emissions for novel nanoscal May 19th, 2017

Announcements

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Leti Will Demo World’s-first WVGA 10-µm Pitch GaN Microdisplays for Augmented Reality Video at Display Week in Los Angles: Invited Paper also Will Present Leti’s Success with New Augmented Reality Technology That Reduces Pixel Pitch to Less than 5 Microns May 22nd, 2017

Sensors detect disease markers in breath May 19th, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project