Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Perfecting a solar cell by adding imperfections

Abstract:
Nanotechnology is paving the way toward improved solar cells. New research shows that a film of carbon nanotubes may be able to replace two of the layers normally used in a solar cell, with improved performance at a lower cost. Researchers have found a surprising way to give the nanotubes the properties they need: add defects.

Perfecting a solar cell by adding imperfections

Santa Fe, NM | Posted on June 16th, 2008

Currently, these solar cells, called dye-sensitized solar cells, have a transparent film made of an oxide that is applied to glass and conducts electricity. In addition, a separate film made of platinum acts as a catalyst to speed the chemical reactions involved.

Both of these materials have disadvantages, though. The oxide films can't easily be applied to flexible materials: they perform much better on a rigid and heat resistant substrate like glass. This increases costs and limits the kinds of products that can be made. And expensive equipment is necessary to create the platinum films.

Jessika Trancik of the Santa Fe Institute, Scott Calabrese Barton of Michigan State University and James Hone of Columbia University decided to use carbon nanotubes to create a single layer that could perform the functions of both the oxide and platinum layers. They needed it to have three properties: transparency, conductivity, and catalytic activity.

Ordinary carbon nanotubes films are so-so in each of these properties. The obvious ways of improving one, though, sacrifice one of the others. For example, making the film thicker makes it a better catalyst, but then it's less transparent.

Previous theory had suggested that materials may function better as catalysts when they have tiny defects, providing sites for chemicals to attach. So the researchers tried exposing the carbon nanotubes to ozone, which roughs them up a bit. Very thin films, they found, became dramatically better catalysts, with more than ten-fold improvement.

In fact, the performance gets close to that of platinum. "That's remarkable," Trancik says, "because platinum is considered pretty much the best catalyst there is."

In order to address the trade-off between transparency and conductivity, the researchers tried another trick on a bottom layer of tubes: they created carbon nanotubes that were longer. This improved both conductivity and transparency.

The carbon nanotube films might be used in fuel cells and batteries as well.

"This study is an example of using nanostructuring of materials - changing things like defect density and tube length at very small scales - to shift trade-offs between materials properties and get more performance out of a given material," Trancik says. "Making inexpensive materials behave in advanced ways is critical for achieving low-carbon emissions and low cost energy technologies."

The researchers published their results recently in Nano Letters. They are currently in the process of filing a patent application for their techniques.

####

About Santa Fe Institute
The Santa Fe Institute (SFI) is an acknowledged leader in multidisciplinary scientific research. Its objectives are to discover and understand the common fundamental principles in physical, computational, biological, and social complex systems that underlie many of the most profound issues facing science and society today. By transcending disciplines, breaking academic molds, and drawing together an international network of unorthodox creative thinkers, SFI is an independent non-profit research and education center supported by grants, charitable giving, and corporate relationships.

For more information, please click here

Contacts:
Jessika Trancik

505-946-2794

Copyright © Santa Fe Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New, old science combine to make faster medical test: Nanoparticles and Faraday rotation allow faster diagnoses January 23rd, 2017

Traffic jam in empty space: New success for Konstanz physicists in studying the quantum vacuum January 22nd, 2017

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Nanotubes/Buckyballs/Fullerenes

Captured on video: DNA nanotubes build a bridge between 2 molecular posts: Research may lead to new lines of direct communication with cells January 9th, 2017

Nano-chimneys can cool circuits: Rice University scientists calculate tweaks to graphene would form phonon-friendly cones January 4th, 2017

WPI researchers build liquid biopsy chip that detects metastatic cancer cells in blood December 15th, 2016

Infrared instrumentation leader secures exclusive use of Vantablack coating December 5th, 2016

Discoveries

New, old science combine to make faster medical test: Nanoparticles and Faraday rotation allow faster diagnoses January 23rd, 2017

Traffic jam in empty space: New success for Konstanz physicists in studying the quantum vacuum January 22nd, 2017

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Announcements

New, old science combine to make faster medical test: Nanoparticles and Faraday rotation allow faster diagnoses January 23rd, 2017

Traffic jam in empty space: New success for Konstanz physicists in studying the quantum vacuum January 22nd, 2017

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Energy

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Stability challenge in perovskite solar cell technology: New research reveals intrinsic instability issues of iodine-containing perovskite solar cells December 26th, 2016

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

Nanoscale view of energy storage January 16th, 2017

One step closer to reality: Devices that convert heat into electricity: Composite material yields 10 times -- or higher -- voltage output January 4th, 2017

STMicroelectronics Peps Up Booming Social-Fitness Scene with Smart Motion Sensors for Better Accuracy, Longer Battery Life, and Faster Time to Market January 2nd, 2017

Fuel Cells

Scientists boost catalytic activity for key chemical reaction in fuel cells: New platinum-based catalysts with tensile surface strain could improve fuel cell efficiency December 19th, 2016

It's basic: Alternative fuel cell technology reduces cost: Study sets performance targets for metal-free fuel cell membrane December 13th, 2016

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Water vapor sets some oxides aflutter: Newly discovered phenomenon could affect materials in batteries and water-splitting devices October 3rd, 2016

Solar/Photovoltaic

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Stability challenge in perovskite solar cell technology: New research reveals intrinsic instability issues of iodine-containing perovskite solar cells December 26th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project