Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Perfecting a solar cell by adding imperfections

Abstract:
Nanotechnology is paving the way toward improved solar cells. New research shows that a film of carbon nanotubes may be able to replace two of the layers normally used in a solar cell, with improved performance at a lower cost. Researchers have found a surprising way to give the nanotubes the properties they need: add defects.

Perfecting a solar cell by adding imperfections

Santa Fe, NM | Posted on June 16th, 2008

Currently, these solar cells, called dye-sensitized solar cells, have a transparent film made of an oxide that is applied to glass and conducts electricity. In addition, a separate film made of platinum acts as a catalyst to speed the chemical reactions involved.

Both of these materials have disadvantages, though. The oxide films can't easily be applied to flexible materials: they perform much better on a rigid and heat resistant substrate like glass. This increases costs and limits the kinds of products that can be made. And expensive equipment is necessary to create the platinum films.

Jessika Trancik of the Santa Fe Institute, Scott Calabrese Barton of Michigan State University and James Hone of Columbia University decided to use carbon nanotubes to create a single layer that could perform the functions of both the oxide and platinum layers. They needed it to have three properties: transparency, conductivity, and catalytic activity.

Ordinary carbon nanotubes films are so-so in each of these properties. The obvious ways of improving one, though, sacrifice one of the others. For example, making the film thicker makes it a better catalyst, but then it's less transparent.

Previous theory had suggested that materials may function better as catalysts when they have tiny defects, providing sites for chemicals to attach. So the researchers tried exposing the carbon nanotubes to ozone, which roughs them up a bit. Very thin films, they found, became dramatically better catalysts, with more than ten-fold improvement.

In fact, the performance gets close to that of platinum. "That's remarkable," Trancik says, "because platinum is considered pretty much the best catalyst there is."

In order to address the trade-off between transparency and conductivity, the researchers tried another trick on a bottom layer of tubes: they created carbon nanotubes that were longer. This improved both conductivity and transparency.

The carbon nanotube films might be used in fuel cells and batteries as well.

"This study is an example of using nanostructuring of materials - changing things like defect density and tube length at very small scales - to shift trade-offs between materials properties and get more performance out of a given material," Trancik says. "Making inexpensive materials behave in advanced ways is critical for achieving low-carbon emissions and low cost energy technologies."

The researchers published their results recently in Nano Letters. They are currently in the process of filing a patent application for their techniques.

####

About Santa Fe Institute
The Santa Fe Institute (SFI) is an acknowledged leader in multidisciplinary scientific research. Its objectives are to discover and understand the common fundamental principles in physical, computational, biological, and social complex systems that underlie many of the most profound issues facing science and society today. By transcending disciplines, breaking academic molds, and drawing together an international network of unorthodox creative thinkers, SFI is an independent non-profit research and education center supported by grants, charitable giving, and corporate relationships.

For more information, please click here

Contacts:
Jessika Trancik

505-946-2794

Copyright © Santa Fe Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Engineers create a better way to boil water -- with industrial, electronics applications May 5th, 2016

Clues on the path to a new lithium battery technology: Charging produces highly reactive singlet oxygen in lithium air batteries May 5th, 2016

Unique nano-capsules promise the targeted drug delivery: Russian scientists created unique nano-capsules for the targeted drug delivery May 5th, 2016

Molybdenum disulfide holds promise for light absorption: Rice researchers probe light-capturing properties of atomically thin MoS2 May 5th, 2016

Nanotubes/Buckyballs/Fullerenes

Non-animal approach to predict impact of nanomaterials on human lung published Archives of Toxicology publishes workshop recommendations May 2nd, 2016

Clay nanotube-biopolymer composite scaffolds for tissue engineering May 1st, 2016

NREL finds nanotube semiconductors well-suited for PV systems April 27th, 2016

Researchers create artificial protein to control assembly of buckyballs April 27th, 2016

Discoveries

Engineers create a better way to boil water -- with industrial, electronics applications May 5th, 2016

Unique nano-capsules promise the targeted drug delivery: Russian scientists created unique nano-capsules for the targeted drug delivery May 5th, 2016

Molybdenum disulfide holds promise for light absorption: Rice researchers probe light-capturing properties of atomically thin MoS2 May 5th, 2016

The intermediates in a chemical reaction photographed 'red-handed' Researchers at the UPV/EHU-University of the Basque Country have for the first time succeeded in imaging all the steps in a complex organic reaction and have resolved the mechanisms that explain it May 4th, 2016

Announcements

Engineers create a better way to boil water -- with industrial, electronics applications May 5th, 2016

Clues on the path to a new lithium battery technology: Charging produces highly reactive singlet oxygen in lithium air batteries May 5th, 2016

Unique nano-capsules promise the targeted drug delivery: Russian scientists created unique nano-capsules for the targeted drug delivery May 5th, 2016

Molybdenum disulfide holds promise for light absorption: Rice researchers probe light-capturing properties of atomically thin MoS2 May 5th, 2016

Energy

Engineers create a better way to boil water -- with industrial, electronics applications May 5th, 2016

Nanoparticles present sustainable way to grow food crops May 1st, 2016

NREL finds nanotube semiconductors well-suited for PV systems April 27th, 2016

Researchers create artificial protein to control assembly of buckyballs April 27th, 2016

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Clues on the path to a new lithium battery technology: Charging produces highly reactive singlet oxygen in lithium air batteries May 5th, 2016

New spin Seebeck thermoelectric device with higher conversion efficiency created April 26th, 2016

Highlights from the Graphene Flagship April 22nd, 2016

Adding some salt to the recipe for energy storage materials: Researchers use common table salt as growth template April 22nd, 2016

Fuel Cells

Ruthenium nanoframes open the doors to better catalysts April 4th, 2016

Saving sunshine for a rainy day: New catalyst offers efficient storage of green energy: Team led by U of T Engineering designs world's most efficient catalyst for storing energy as hydrogen by splitting water molecules March 28th, 2016

Carbon leads the way in clean energy: Groundbreaking research at Griffith University is leading the way in clean energy, with the use of carbon as a way to deliver energy using hydrogen March 23rd, 2016

Physicists prove energy input predicts molecular behavior: Theoretical proof could lead to more reliable nanomachines March 22nd, 2016

Solar/Photovoltaic

NREL finds nanotube semiconductors well-suited for PV systems April 27th, 2016

Flipping a chemical switch helps perovskite solar cells beat the heat April 26th, 2016

Manipulating light inside opaque layers April 24th, 2016

Thin-film solar cells: How defects appear and disappear in CIGSe cells: Concentration of copper plays a crucial role April 23rd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic