Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > A promising step towards more effective hydrogen storage

Abstract:
An international research team led by Professor Rajeev Ahuja, Uppsala University, has demonstrated an atomistic mechanism of hydrogen release in magnesium nanoparticles - a potential hydrogen storage material. The findings have been published in the online edition of Proceedings of the National Academy of Science (PNAS).

A promising step towards more effective hydrogen storage

Sweden | Posted on June 16th, 2008

It is becoming clear that cars of the future will have to move from using the combination of petrol and a combustion engine in order to combat global warming and potential oil shortages. One of the prime candidate technologies are fuel cells using hydrogen gas as fuel, chiefly because hydrogen is among the most abundant elements on earth and is able of producing energy through chemical reactions with oxygen in the fuel cells releasing only water - an environmentally benign by-product. Storing hydrogen gas in a compact way is, however, still an unsolved problem.

Much research effort has been directed at absorbing hydrogen in metal powders, forming so-called metal hydrides. Magnesium may absorb up to 7.7 weight per cent of hydrogen, and has commonly been studied for this purpose, especially since fast loading and unloading of hydrogen can be accomplished by adding catalysts like iron and nickel particles.

It has been speculated that the catalysts act as shuttles, helping to transport hydrogen out of the material. With the help of computer simulations of magnesium clusters at the quantum mechanical level, the Uppsala researchers and their colleagues have now been able to show in atomic scale how this happens and why only a small amount of catalysts are necessary to improve the hydrogen release. The extensive simulations were performed at Uppsala University's Multidisciplinary Center for Advanced Computational Science (UPPMAX).

"We expect the findings to aid further technical improvements of magnesium-based hydrogen storage materials, as well as other related light metal hydrides," says Professor Raajev Ahuja.

####

For more information, please click here

Contacts:
Peter Larsson
phone +46(0)18-471 35 67


C. Moysés Araújo
phone+46(0)18-471 35 84


Professor Rajeev Ahuja
phone +46(0)70-425 09 35

Copyright © Uppsala University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Read the article in the Early Edition of PNAS

Related News Press

News and information

Making graphene work for real-world devices: Fundamental research in phonon scattering helps researchers design graphene materials for applications April 24th, 2014

Return on investment for kit and promotion materials April 24th, 2014

Protecting olive oil from counterfeiters April 24th, 2014

NanoSafe, Inc. announces the addition of the Labconco Protector® Glove Box to its NanoSafe Tested™ registry April 23rd, 2014

Discoveries

Making graphene work for real-world devices: Fundamental research in phonon scattering helps researchers design graphene materials for applications April 24th, 2014

Return on investment for kit and promotion materials April 24th, 2014

Protecting olive oil from counterfeiters April 24th, 2014

High-Performance, Low-Cost Ultracapacitors Built with Graphene and Carbon Nanotubes: Future devices based on technology could bridge gap between batteries and conventional capacitors in portable electronics and hybrid electric vehicles April 23rd, 2014

Announcements

Making graphene work for real-world devices: Fundamental research in phonon scattering helps researchers design graphene materials for applications April 24th, 2014

Return on investment for kit and promotion materials April 24th, 2014

Protecting olive oil from counterfeiters April 24th, 2014

High-Performance, Low-Cost Ultracapacitors Built with Graphene and Carbon Nanotubes: Future devices based on technology could bridge gap between batteries and conventional capacitors in portable electronics and hybrid electric vehicles April 23rd, 2014

Energy

Making graphene work for real-world devices: Fundamental research in phonon scattering helps researchers design graphene materials for applications April 24th, 2014

Atomic switcheroo explains origins of thin-film solar cell mystery April 23rd, 2014

Like a hall of mirrors, nanostructures trap photons inside ultrathin solar cells April 22nd, 2014

Global leader in solar cell manufacturing eyes New York for major expansion outside of Japan: CNSE and Solar Frontier Explore $700 Million Investment, Job Creation in New York State April 22nd, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE