Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Secret ingredient: nanoparticles aid bone growth

Abstract:
Nanotube-reinforced material produces denser bone tissue

Secret ingredient: nanoparticles aid bone growth

Houston, TX | Posted on June 15th, 2008

In the first study of its kind, bioengineers and bioscientists at Rice University and Radboud University in Nijmegen, Netherlands, have shown they can grow denser bone tissue by sprinkling stick-like nanoparticles throughout the porous material used to pattern the bone.

The research is available online and slated to appear in the journal Bone. It's the latest breakthrough from the burgeoning field of tissue engineering. The new discipline combines the latest research in materials science and biomedical engineering to produce tissues that can be transplanted without risk of rejection.

To grow new bone, tissue engineers typically place bone cells on porous, biodegradable materials called scaffolds, which act as patterns. With the right chemical and physical cues, the cells can be coaxed into producing new bone. As the scaffold degrades, it is replaced by new bone.

"Ideally, a scaffold should be highly porous, nontoxic and biodegradable, yet strong enough to bear the structural load of the bone that will eventually replace it," said lead researcher Antonios Mikos, Rice's J.W. Cox Professor in Bioengineering, professor of chemical and biomolecular engineering and the director of Rice's Center for Excellence in Tissue Engineering. "Previous research has shown that carbon nanotubes give added strength to polymer scaffolds, but this is the first study to examine the performance of these materials in an animal model."

In the experiments, the researchers implanted two kinds of scaffolds into rabbits. One type was made of a biodegradable plastic called poly(propylene fumarate), or PPF, which has performed well in previous experiments. The second was made of 99.5 percent PPF and 0.5 percent single-walled carbon nanotubes. Nanotubes are about 80,000th the width of a hair. While they are normally about a thousand times longer than they are wide, the researchers used shorter segments that have fared well in prior cytocompatibility studies.

Half the samples were examined four weeks after implantation and half after 12 weeks. While there was no notable difference in performance at four weeks, the nanotube composites exhibited up to threefold greater bone ingrowth after 12 weeks than the PPF. Furthermore, the researchers found the 12-week composite scaffolds contained about two-thirds as much bone tissue as the nearby native bone tissue, while the PPF contained only about one-fifth as much.

Mikos said the nanocomposites performed better than anticipated. In fact, the results indicate that they may go beyond passive guides and take an active role in promoting bone growth.

"We don't yet know the exact mechanism of this enhanced bone formation, but we have intensive studies under way to find out," Mikos said. "It could be related to changes in surface chemistry, strength or other factors."

Co-authors on the paper include Rice former Ph.D. graduate student Xinfeng Shi, now a research scientist at Bausch & Lomb, and former postdoctoral fellow Balaji Sitharaman, now an assistant professor of biomedical engineering at State University of New York at Stony Brook; Lon Wilson, professor of chemistry at Rice; and John Jansen, Frank Walboomers, Hongbing Liao and Vincent Cuijpers, all of Radboud University Nijmegen Medical Center.

The research was funded by the National Institutes of Health, the National Science Foundation, the Robert A. Welch Foundation, and Rice's J. Evans-Attwell Postdoctoral Fellows Program.

####

About Rice University
Located in Houston, Rice University is consistently ranked one of America's best teaching and research universities. It is distinguished by its: size—2,850 undergraduates and 1,950 graduate students; selectivity—10 applicants for each place in the freshman class; resources—an undergraduate student-to-faculty ratio of 6-to-1, and the fifth largest endowment per student among American universities; residential college system, which builds communities that are both close-knit and diverse; and collaborative culture, which crosses disciplines, integrates teaching and research, and intermingles undergraduate and graduate work. Rice's wooded campus is located in the nation's fourth largest city and on America's South Coast.

For more information, please click here

Contacts:
B.J. Almond
713-348-6770

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Fewer defects from a 2-D approach August 15th, 2017

Scientists from the University of Manchester and Diamond Light Source work with Deben to develop and test a new compression stage to study irradiated graphite at elevated temperatures August 15th, 2017

Oxford Instruments Plasma Technology announces a new partner in Korea August 15th, 2017

Nanomedicine

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

JPK reports on how the University of Glasgow is using their NanoWizard® AFM and CellHesion module to study how cells interact with their surroundings August 2nd, 2017

Research team bends individual tetrapod nanostructures August 2nd, 2017

Arrowhead Pharmaceuticals to Webcast Fiscal 2017 Third Quarter Results July 27th, 2017

Discoveries

Fewer defects from a 2-D approach August 15th, 2017

Scientists from the University of Manchester and Diamond Light Source work with Deben to develop and test a new compression stage to study irradiated graphite at elevated temperatures August 15th, 2017

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium August 14th, 2017

Engineers pioneer platinum shell formation process – and achieve first-ever observation August 11th, 2017

Announcements

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Fewer defects from a 2-D approach August 15th, 2017

Scientists from the University of Manchester and Diamond Light Source work with Deben to develop and test a new compression stage to study irradiated graphite at elevated temperatures August 15th, 2017

Oxford Instruments Plasma Technology announces a new partner in Korea August 15th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project