Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > News > Horizons For Immunotherapy

June 13th, 2008

Horizons For Immunotherapy

Abstract:
I'm given to note that progress in targeted therapies - in particular those that use nanoparticles like dendrimers to string together homing mechanisms with cell destruction payloads - is very important. All sorts of cells need killing as we get older, to prevent the damage they cause: cancer cells, senescent cells, and so forth. Targeted nanoparticle therapies will soon provide a broad and extensible technology platform to get that job done, for any cell whose biochemistry we know how to distinguish, thus lightening the load of age-related damage in our bodies.

When you stop to think about it, we already have a flexible, targeted cell destruction therapy roaming our bodies from day one: it's called the immune system. Immune cells are very much more sophisticated than the dendrimers being built in laboratories today, and are capable of destroying much more than just errant cells. Any biochemical that can be broken down within a cell is fair game, not just those biochemicals that make up our cells.

Looking ahead, we can see three paths:

* The path of nanoparticles, nanoscale targeting devices and payloads to destroy the specific cells

* The path of manipulating our immune system into destroying targeted cells and cleaning up specific biochemicals

* The merged path: artificial cells built to have a limited subset of natural immune cell functions, and set to a specific cleanup task within the body

I expect it'll be a good 20 years or so before we see the first practical applications of artificial cells in this area, though present progress suggests less complex projects will emerge more rapidly than that. For the purposes of this post, I'm more interested in what will result from work on immune therapies over the next decade, alongside the clinical application of targeted nanoparticle therapies.

Source:
mprize.org

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Revealing the nature of magnetic interactions in manganese oxide: New technique for probing local magnetic interactions confirms 'superexchange' model that explains how the material gets its long-range magnetic order May 25th, 2016

Gigantic ultrafast spin currents: Scientists from TU Wien (Vienna) are proposing a new method for creating extremely strong spin currents. They are essential for spintronics, a technology that could replace today's electronics May 25th, 2016

Diamonds closer to becoming ideal semiconductors: Researchers find new method for doping single crystals of diamond May 25th, 2016

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

Blog sites

Searching for a nanotech self-organizing principle May 1st, 2016

Graphene-based Magnetoresistance Sensor 200 Times as Sensitive as Silicon November 1st, 2015

Can graphene make the world’s water clean? July 13th, 2015

Graphenea celebrates fifth anniversary April 27th, 2015

Nanomedicine

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

Nanoscale Trojan horses treat inflammation May 24th, 2016

Programmable materials find strength in molecular repetition May 23rd, 2016

Tiny packages may pack powerful treatment for brain tumors: Nanocarrier provides efficient delivery of chemotherapeutic drug May 23rd, 2016

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Revealing the nature of magnetic interactions in manganese oxide: New technique for probing local magnetic interactions confirms 'superexchange' model that explains how the material gets its long-range magnetic order May 25th, 2016

Gigantic ultrafast spin currents: Scientists from TU Wien (Vienna) are proposing a new method for creating extremely strong spin currents. They are essential for spintronics, a technology that could replace today's electronics May 25th, 2016

Diamonds closer to becoming ideal semiconductors: Researchers find new method for doping single crystals of diamond May 25th, 2016

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

Life Extension/Cryonics

Preventing protein unfolding: Polymers can reinforce proteins under mechanical forces February 27th, 2016

Lifeboat Foundation launches 3 books December 16th, 2015

Hopes of improved brain implants October 1st, 2015

Indefinite Life Extension Activists Organize Online Demonstration February 26th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic