Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Detection instrument can sniff out airborne terrorist threats

Photos by Jacqueline McBride
Physicist Paul Steele (kneeling) and chemist Keith Coffee make adjustments to the LLNL detection instrument known as Single-Particle Aerosol Mass Spectrometry, or SPAMS.
Photos by Jacqueline McBride

Physicist Paul Steele (kneeling) and chemist Keith Coffee make adjustments to the LLNL detection instrument known as Single-Particle Aerosol Mass Spectrometry, or SPAMS.

Abstract:
Security and law enforcement officials may some day have a new ally - a universal detection system that can monitor the air for virtually all of the major threat agents that could be used by terrorists.

Detection instrument can sniff out airborne terrorist threats

LIVERMORE, CA | Posted on June 12th, 2008

This type of system is under development by a team of Lawrence Livermore National Laboratory (LLNL) scientists and engineers, and has already been tested in laboratory and field experiments.

In their latest advance, the team has conceptually shown that they can almost simultaneously detect four potential threat materials - biological, chemical, explosives and radiological - along with illicit drugs.

Their work, using a system called Single-Particle Aerosol Mass Spectrometry, or SPAMS, is described in the June 15 edition of Analytical Chemistry, a semi-monthly journal published by the American Chemical Society.

"We believe SPAMS is the only detection instrument that can autonomously detect multiple types of threat agents and trigger alarms within less than a minute," said Matthias Frank, an LLNL physicist and one of the paper's co-authors.

"What sets this work apart," Frank explained, "is that we did our experiments with all these types of threat agents within minutes of each other without reconfiguring the SPAMS instrument." (In some cases, surrogate materials were used.)

Last spring, the researchers announced that their instrument could perform as a three-in-one detection machine, monitoring the air for biological, chemical and explosive agents.

Since then, the Livermore team has added the capabilities of detecting illicit drugs and powders from radioactive metals. They developed the software capability to assist in detecting metal powders and the algorithms to help detect all four threat agents at one time.

The paper's lead author, LLNL physicist Paul Steele, notes that three factors are particularly important in developing a detection machine like SPAMS: sensitivity, false alarm rate and response time.

"What we have accomplished," Steele said, "is to make an instrument that is very sensitive, with a very low false alarm rate, but very fast. That's unique. Other systems that are just as fast and sensitive have higher false alarm rates."

Besides Frank and Steele, other researchers on the SPAMS team include chemists Eric Gard, David Fergenson, Keith Coffee and George Farquar; forensic chemist and graduate student Audrey Martin; microbiologist Sue Martin; and electronics engineer Vincent Riot.

In lab experiments, SPAMS was tested against four types of materials terrorists might use -- spores of a non-pathogenic strain of Bacillus anthracis (other strains of this bacteria cause anthrax); diethyl phthalate (a nerve agent surrogate), natural cobalt powder (a surrogate for Cobalt 60 and other radioactive metals) and trinitro-1,3,5-triazinane (RDX, a high explosive). Additionally, it was tested against pseudoephedrine (used to synthesize methamphetamine).

In single- and multiple-agent tests, SPAMS accurately identified each substance and set off the correct alarms within an average of 34 seconds after their release against a background of air as the system was open to the environment. All of the measurements were achieved within 26 to 46 seconds after the compounds' release.

The two multiple-agent tests involved the use of natural cobalt powder and RDX, and a non-pathogenic strain of Bacillus anthracis and RDX.

In field experiments, SPAMS has been tested at San Francisco International Airport. As part of a background study, the mass spectrometry system analyzed the air for about seven weeks in 2004-05, recording data, though it lacked the capability to set off alarms. The system records were later analyzed in the lab to evaluate whether any alarms, false or real, would have been triggered.

The researchers determined that while a few particles showed up as spores among the almost one million particles studied, there were so few that no alarms would have been triggered.

"What distinguishes SPAMS from other instruments is the high-quality information we receive from the instrument in the form of single-particle mass spectra," Frank said. "As a result, we get specificity and many fewer false alarms. We're very enthusiastic about how the system is working, not only in the lab but also in field tests."

For the future, the Livermore team would like to develop ways to make the SPAMS machine smaller and less expensive.

They would like to find opportunities for additional field tests, such as at airports, where SPAMS could be used to screen checked and carry-on baggage and at passenger portals. The instrument also could assist in screening people for disease and might help law enforcement authorities in examining suspicious powder samples.

Research funds to develop or field test SPAMS have been provided by the Defense Advanced Research Projects Agency and the Technical Support Working Group, both within the U.S. Department of Defense, as well as the U.S. Department of Homeland Security.

SPAMS started out almost a decade ago as an internally funded project at LLNL headed by Matthias Frank and Eric Gard. It originally only detected biological materials and was called the Bioaerosol Mass Spectrometry (BAMS) system. As the system gained new capabilities, it was renamed as SPAMS.

####

About Lawrence Livermore National Laboratory
Founded in 1952, Lawrence Livermore National Laboratory is a national security laboratory, with a mission to ensure national security and apply science and technology to the important issues of our time. Lawrence Livermore National Laboratory is managed by Lawrence Livermore National Security, LLC for the U.S. Department of Energy's National Nuclear Security Administration.

For more information, please click here

Contacts:
Stephen Wampler
Phone: (925) 423-3107

Copyright © Lawrence Livermore National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Tissue regeneration using anti-inflammatory nanomolecules August 22nd, 2014

A breakthrough in imaging gold nanoparticles to atomic resolution by electron microscopy August 22nd, 2014

Ultra-short pulse lasers & Positioning August 21st, 2014

Malvern’s Dr Alan Rawle talks TLAs in plenary lecture at Particulate Systems Analysis conference August 21st, 2014

Announcements

Tissue regeneration using anti-inflammatory nanomolecules August 22nd, 2014

A breakthrough in imaging gold nanoparticles to atomic resolution by electron microscopy August 22nd, 2014

Malvern’s Dr Alan Rawle talks TLAs in plenary lecture at Particulate Systems Analysis conference August 21st, 2014

Water window imaging opportunity: A new theoretical study elucidates mechanisms that could help in producing coherent radiations, ultimately promoting high-contrast imaging of biological samples August 21st, 2014

Homeland Security

Watching Schrödinger's cat die (or come to life): Steering quantum evolution & using probes to conduct continuous error correction in quantum computers July 30th, 2014

Production of Toxic Gas Sensor Based on Nanorods July 28th, 2014

Nano-sized Chip "Sniffs Out" Explosives Far Better than Trained Dogs: TAU researcher's groundbreaking sensor detects miniscule concentrations of hazardous materials in the air July 23rd, 2014

Tiny laser sensor heightens bomb detection sensitivity July 19th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE