Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Health and the Environment Form Focus of Latest NanoBio Seed Grants

Cross-sectional autoradiograms of rodent brains showing (A) control physiological state; and (B) and (C) showing
distribution of brain injury from an injected neurotoxicant. Red areas indicate the highest concentrations of a
biomarker that identifies brain areas that are damaged by the neurotoxicant. Credit: Guilarte Lab
Cross-sectional autoradiograms of rodent brains showing (A) control physiological state; and (B) and (C) showing distribution of brain injury from an injected neurotoxicant. Red areas indicate the highest concentrations of a biomarker that identifies brain areas that are damaged by the neurotoxicant.
Credit: Guilarte Lab

Abstract:
Little is known about how engineered nanomaterials and nanoparticles impact human health and the environment. Particles at the scale of one-billionth of a meter—so small they can slip across the blood-brain barrier—pose many questions about the safety of nanotechnology used in products consumed and used by humans. The Institute for NanoBioTechnology at Johns Hopkins University recently awarded $100,000 to fund research projects that seek to answer these questions. Four $25,000 seed grants were given to multidisciplinary research teams to fund pilot projects across Johns Hopkins.

Health and the Environment Form Focus of Latest NanoBio Seed Grants

Baltimore, MD | Posted on June 10th, 2008

Risk assessment performed in tandem with research into beneficial applications will help researchers make better decisions about how nanotechnology is used in the future, says Jon Links, professor at the Bloomberg School of Public Health and INBT's director of Health and Environment research. "The history of technological research and development is full of examples of unrecognized risks to health and the environment—chlorofluorocarbons or asbestos are examples," Links says. "It is imperative to study potential risks to human health and the environment hand-in-hand with benefit-driven research and development. Doing so provides the best chance to minimize risk, because risk assessment can inform research and development at an early stage, leading to alternative pathways."

Nanoparticles made of silica, for example, can be used to deliver pharmaceuticals. But despite the potential benefits, scientists don't have much information on what happens to these particles after they have offloaded their cargo. Principal investigators from the Bloomberg School of Public Health (BSPH) and the Whiting School of Engineering (WSE) plan to use a protein to measure the toxicity of silica nanoparticles in the brain cells of rodents.

"There is a tremendous interest in using nanomaterials in various aspects of medicine, including delivery of drugs to the brain," says Tomas Guilarte, professor of environmental health sciences in the BSPH and a co-investigator on this study. "However, the possibility that the nanomaterial itself produces brain injury has not been evaluated."

In another proposed study, collaborators from the BSPH and WSE will measure how the shape, size, and function of engineered silica-silicone hybrid nanomaterials affect cellular uptake and response using advanced methods for cell imaging and biomarker assessment. This research also will address questions relating to dose and exposure.

"Once these particles reach cells, it is important to know whether they penetrate into cells, whether cells survive this penetration, and whether the biochemistry inside these cells is altered," says Howard Katz, professor of materials science and engineering. "These methods will permit us to visualize where nanomaterials are located in cells, and the nature of any response by these cells," adds Ellen Silbergeld, professor of Environmental Health Sciences.

Multi-walled carbon nanotubes are commonly used engineered nanoparticles that have been exploited for their exceptional strength, as well as their chemical, optical and electrical properties. But these particles also are known to bind toxic heavy metals. If the nanotubes wind up in the food chain, they could deposit toxic metals in the stomachs of animals or humans. The fate of these metals will be examined in an in vitro study developed by researchers from the Krieger School of Arts and Sciences, (KSAS), WSE and BSPH.

"Given their extremely high surface area to mass ratios, small amounts of carbon nanotubes have the potential to transport relatively large amounts of adsorbed toxins," says William Ball, professor of Geography and Environmental Engineering. "In this way, the carbon nanotubes could effectively act as ‘Trojan horses' that may bring toxic contaminants to locations that they may not otherwise reach."

Nanoparticles made of silver oxide, silver nitrate, silver chloride and titanium dioxide can be found in many household products-from the coatings on washing machines to personal care products. These particles may enter the ecosystem through waste water and affect aquatic life. Investigators from public health, arts and sciences, and engineering will track those particles to see if any show up in oysters commercially harvested from the Chesapeake Bay.

"In the water, engineered nanoparticles can alter oyster immune defense mechanisms, making them more susceptible to oyster diseases," says Thaddeus Graczyk, associate professor in the Bloomberg School of Public Health. "As oysters are predominantly consumed raw, nanoparticles recovered from the water by oysters and retained in their tissue will enter the human food chain."

These pilot projects represent some of the ongoing research at INBT, which seeks to balance benefit-driven applications of nanotechnology with risk assessment. Finding from these investigations will no doubt have policy implications for the use of nanoparticles. "Since inaccurately perceived risks by the public and legislators can slow development and adoption of beneficial technologies, accurate assessment and timely dissemination of the actual risks is becoming more and more critical," Links says. "Relatively little is known about the potential ecologic and human toxicity of nanomaterials, so INBT's pilot project program is critical."

Below is a complete list of pilot program titles and the names of the members of each research team involved:
# "Neurotoxicological and intracellular effects of NPs," Tomas Guilarte, (Professor, Environmental Health Sciences, BSPH) and Howard Katz (Professor, Materials Science and Engineering, WSE).
# "Quantifying the interactions between lymphocytes and engineering nanomaterials: effects of surface modification on cell uptake, distribution and response," Howard Katz (Professor, Materials Science and Engineering, WSE), Ellen Silbergeld (Professor, Environmental Health Sciences, BSPH), and Jennifer Nyland (Research Associate, BSPH).
# "Intestinal desorption and transport properties of metals adsorbed onto carbon nanotubes," Joseph Bressler (Associate Professor, Environmental Health Sciences, BSPH and Kennedy Krieger Institute); Howard Fairbrother (Professor, Chemistry, KSAS); and William Ball (Professor, Geography and Environmental Engineering, WSE).
# "Nanoparticle transport and fate in the aquatic environment; filter-feeding oysters as a target organism," Thaddeus Graczyk (Associate Professor, Environmental Health Sciences, BSPH), Ken Livi (Microbeam Lab Coordinator, KSAS), Kai Loon Chen (Assistant Professor, Geography and Environmental Engineering, WSE); K.T. Ramesh (Professor, Mechanical Engineering, WSE) and Denis Wirtz (Professor, Chemical and Biomolecular Engineering, WSE).

INBT GRANT PROPOSAL SERVICE

INBT offers help to Johns Hopkins University faculty that wish to submit a nanobiotechnology related grant proposal. Seed grants awarded by INBT must have more than one principal investigator. Principal investigators must be from different schools or departments. To learn more about INBT's grant proposal service, please contact Sue Porterfield at or call 410-516-3423.

Story by Mary Spiro

####

About Institute for NanoBioTechnology
The Institute for NanoBioTechnology at Johns Hopkins University is revolutionizing health care by bringing together internationally renowned expertise in medicine, engineering, the sciences, and public health to create new knowledge and groundbreaking technologies.

INBT programs in research, education, outreach, and technology transfer are designed to foster the next wave of nanobiotechnology innovation.

Approximately 155 faculty are affiliated with INBT and are also members of the following Johns Hopkins institutions: Krieger School of Arts and Sciences, Whiting School of Engineering, School of Medicine, Bloomberg School of Public Health, and Applied Physics Laboratory.

For more information, please click here

Contacts:
Mary Spiro

Copyright © Institute for NanoBioTechnology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

GLOBALFOUNDRIES Announces Availability of 45nm RF SOI to Advance 5G Mobile Communications: Optimized RF features deliver high-performance solutions for mmWave beam forming applications in 5G smartphones and base stations February 22nd, 2017

EmTech Asia breaks new barriers with potential applications of space exploration with NASA and MIT February 22nd, 2017

JPK selects compact tensile stage from Deben for their NanoWizard® AFM platform to broaden capabilities for materials characterisation February 22nd, 2017

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

Announcements

GLOBALFOUNDRIES Announces Availability of 45nm RF SOI to Advance 5G Mobile Communications: Optimized RF features deliver high-performance solutions for mmWave beam forming applications in 5G smartphones and base stations February 22nd, 2017

EmTech Asia breaks new barriers with potential applications of space exploration with NASA and MIT February 22nd, 2017

JPK selects compact tensile stage from Deben for their NanoWizard® AFM platform to broaden capabilities for materials characterisation February 22nd, 2017

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

Environment

Meta-lenses bring benchtop performance to small, hand-held spectrometer: Game-changing nanostructure-based lenses allow smaller devices, increased functionality February 9th, 2017

NIST updates 'sweet' 1950s separation method to clean nanoparticles from organisms January 27th, 2017

Investigating the impact of natural and manmade nanomaterials on living things: Center for Environmental Implications of Nanotechnology develops tools to assess current and future risk January 9th, 2017

PCATDES Starts Field Testing of Photocatalytic Reactors in South East Asia December 28th, 2016

Safety-Nanoparticles/Risk management

NIST updates 'sweet' 1950s separation method to clean nanoparticles from organisms January 27th, 2017

Nanoparticle exposure can awaken dormant viruses in the lungs January 17th, 2017

Investigating the impact of natural and manmade nanomaterials on living things: Center for Environmental Implications of Nanotechnology develops tools to assess current and future risk January 9th, 2017

First time physicists observed and quantified tiny nanoparticle crossing lipid membrane November 7th, 2016

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Oxford Instruments announces Dr Brad Ramshaw of Cornell University, as winner of the 2017 Lee Osheroff Richardson Science Prize February 20th, 2017

Nominations Invited for $250,000 Kabiller Prize in Nanoscience: Major international prize recognizes a visionary nanotechnology researcher February 20th, 2017

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

Good vibrations help reveal molecular details: Rice University scientists combine disciplines to pinpoint small structures in unlabeled molecules February 15th, 2017

Nanobiotechnology

Good vibrations help reveal molecular details: Rice University scientists combine disciplines to pinpoint small structures in unlabeled molecules February 15th, 2017

In-cell molecular sieve from protein crystal February 14th, 2017

Cedars-Sinai, UCLA Scientists Use New ‘Blood Biopsies’ With Experimental Device to Speed Cancer Diagnosis and Predict Disease Spread: Leading-Edge Research Is Part of National Cancer Moonshot Initiative February 13th, 2017

Nanobiotix appoints senior executive from pharmaceutical industry, as Chief Operating Officer: Oncology industry veteran to oversee operations and product commercialization February 8th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project