Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Livermore researchers use carbon nanotubes for molecular transport

FAST FLOW THROUGH CARBON NANOTUBES: The animation starts with the depiction of the water flow through a regular "rough" pipe. The molecules near the wall stick to it and move much slower than the molecules in the middle of the pipe. Colors indicate the speed of the molecules -- green are fast, yellow are slower, red are the slowest.
The rough pipe fades and the carbon nanotube appears. All the molecules in the carbon nanotube move fast (green). They do not stick to the surface of the nanotube because that surface is very slippery. The water molecules travel in chains because they interact with each other strongly via hydrogen bonds. These two effects (the slippery nanotube surface and formation of water molecule chains inside the nanotube) combine to produce this phenomenon of ultra-fast flow through carbon nanotubes.
Animation by Kwei-Yu Chu/LLNL - https://publicaffairs.llnl.gov/news/news_releases/2008/NR-08-06-03.html
FAST FLOW THROUGH CARBON NANOTUBES: The animation starts with the depiction of the water flow through a regular "rough" pipe. The molecules near the wall stick to it and move much slower than the molecules in the middle of the pipe. Colors indicate the speed of the molecules -- green are fast, yellow are slower, red are the slowest. The rough pipe fades and the carbon nanotube appears. All the molecules in the carbon nanotube move fast (green). They do not stick to the surface of the nanotube because that surface is very slippery. The water molecules travel in chains because they interact with each other strongly via hydrogen bonds. These two effects (the slippery nanotube surface and formation of water molecule chains inside the nanotube) combine to produce this phenomenon of ultra-fast flow through carbon nanotubes.
Animation by Kwei-Yu Chu/LLNL - https://publicaffairs.llnl.gov/news/news_releases/2008/NR-08-06-03.html

Abstract:
Molecular transport across cellular membranes is essential to many of life's processes, for example electrical signaling in nerves, muscles and synapses.

In biological systems, the membranes often contain a slippery inner surface with selective filter regions made up of specialized protein channels of sub-nanometer size. These pores regulate cellular traffic, allowing some of the smallest molecules in the world to traverse the membrane extremely quickly, while at the same time rejecting other small molecules and ions.

Livermore researchers use carbon nanotubes for molecular transport

LIVERMORE, CA | Posted on June 9th, 2008

Researchers at Lawrence Livermore National Laboratory are mimicking that process with manmade carbon nanotube membranes, which have pores that are 100,000 times smaller than a human hair, and were able to determine the rejection mechanism within the pores.

"Hydrophobic, narrow diameter carbon nanotubes can provide a simplified model of membrane channels by reproducing these critical features in a simpler and more robust platform," said Olgica Bakajin, who led the LLNL team whose study appeared in the June 6 online edition of the journal Proceedings of the National Academy of Sciences.

In the initial discovery, reported in the May 19, 2006 issue of the journal Science, the LLNL team found that water molecules in a carbon nanotube move fast and do not stick to the nanotube's super smooth surface, much like water moves through biological channels. The water molecules travel in chains - because they interact with each other strongly via hydrogen bonds.

"You can visualize it as mini-freight trains of chain-bonded water molecules flying at high speed through a narrow nanotube tunnel," said Hyung Gyu Park, an LLNL postdoctoral researcher and a team member.

One of the most promising applications for carbon nanotube membranes is sea water desalination. These membranes will some day be able to replace conventional membranes and greatly reduce energy use for desalination.

In the recent study, the researchers wanted to find out if the membranes with 1.6 nanometer (nm) pores reject ions that make up common salts. In fact, the pores did reject the ions and the team was able to understand the rejection mechanism.

"Our study showed that pores with a diameter of 1.6nm on the average, the salts get rejected due to the charge at the ends of the carbon nanotubes," said Francesco Fornasiero, an LLNL postdoctoral researcher, team member and the study's first author

Fast flow through carbon nanotube pores makes nanotube membranes more permeable than other membranes with the same pore sizes. Yet, just like conventional membranes, nanotube membranes exclude ions and other particles due to a combination of small pore size and pore charge effects.

"While carbon nanotube membranes can achieve similar rejection as membranes with similarly sized pores, they will provide considerably higher permeability, which makes them potentially much more efficient than the current generation of membranes," said Aleksandr Noy, a senior member of the LLNL team.

Researchers will be able to build better membranes when they can independently change pore diameter, charge and material that fills gaps between carbon nanotubes.

####

About Lawrence Livermore National Laboratory
Founded in 1952, Lawrence Livermore National Laboratory is a national security laboratory, with a mission to ensure national security and apply science and technology to the important issues of our time. Lawrence Livermore National Laboratory is managed by Lawrence Livermore National Security, LLC for the U.S. Department of Energy's National Nuclear Security Administration.

For more information, please click here

Contacts:
Anne M. Stark
(925) 422-9799

Copyright © Lawrence Livermore National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers engineer improvements of technology used in digital memory November 24th, 2014

Research reveals how our bodies keep unwelcome visitors out of cell nuclei November 24th, 2014

An Inside Job: UC-Designed Nanoparticles Infiltrate, Kill Cancer Cells From Within November 24th, 2014

Cooling with the coldest matter in the world November 24th, 2014

Videos/Movies

Purdue 3-D printing innovation capable of making stronger, lighter metal works for auto, aerospace industries November 20th, 2014

New way to move atomically thin semiconductors for use in flexible devices November 13th, 2014

A billion holes can make a battery November 10th, 2014

Manipulating complex molecules by hand: New method in scanning probe microscopy: Jülich researchers create a word using 47 molecules November 6th, 2014

Nanotubes/Buckyballs

Tesla NanoCoatings Increasing Use of SouthWest NanoTechnologies Carbon Nanotubes (CNTs) for its Infrastructure Coatings and Paints: High Quality SMW™ Specialty Multi-wall Carbon Nanotubes Incorporated into Teslan®-brand coatings used by Transportation, Oil and Gas Companies November 19th, 2014

Graphene/nanotube hybrid benefits flexible solar cells: Rice University labs create novel electrode for dye-sensitized cells November 17th, 2014

SouthWest NanoTechnologies to Demonstrate 3D Capacitive Touch Sensor Featuring Transparent, Thermoformed Carbon Nanotube Ink at Printed Electronics USA 2014 (Booth J25) -- “Conductive and Semiconducting Single-Wall Carbon Nanotube Inks” will be Topic of Company Presentation November 10th, 2014

Neural Canals Produced in Iran for Recovery of Sciatica Nerve November 8th, 2014

Discoveries

Researchers engineer improvements of technology used in digital memory November 24th, 2014

Research reveals how our bodies keep unwelcome visitors out of cell nuclei November 24th, 2014

ASU, IBM move ultrafast, low-cost DNA sequencing technology a step closer to reality November 24th, 2014

An Inside Job: UC-Designed Nanoparticles Infiltrate, Kill Cancer Cells From Within November 24th, 2014

Announcements

Research reveals how our bodies keep unwelcome visitors out of cell nuclei November 24th, 2014

ASU, IBM move ultrafast, low-cost DNA sequencing technology a step closer to reality November 24th, 2014

An Inside Job: UC-Designed Nanoparticles Infiltrate, Kill Cancer Cells From Within November 24th, 2014

Cooling with the coldest matter in the world November 24th, 2014

Water

Iranian Experts Clean Uranium-Contaminated Water by Nano-Particles November 23rd, 2014

Nano Sorbents Able to Remove Pollutions Caused by Oil Derivatives November 20th, 2014

Application of Nanocomposites in Production of Photocatalysts for Water Treatment November 17th, 2014

Newly-Developed Enzyme Catalyst Able to Remove Pollutants from Wastewater November 12th, 2014

Nanobiotechnology

Quantum mechanical calculations reveal the hidden states of enzyme active sites November 20th, 2014

Tokyo Institute of Technology research: Protein-engineered cages aid studies of cell functions November 19th, 2014

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Implementation of DNA Chains in Designing Nanospin Pieces November 9th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More












ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE