Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Livermore researchers use carbon nanotubes for molecular transport

FAST FLOW THROUGH CARBON NANOTUBES: The animation starts with the depiction of the water flow through a regular "rough" pipe. The molecules near the wall stick to it and move much slower than the molecules in the middle of the pipe. Colors indicate the speed of the molecules -- green are fast, yellow are slower, red are the slowest.
The rough pipe fades and the carbon nanotube appears. All the molecules in the carbon nanotube move fast (green). They do not stick to the surface of the nanotube because that surface is very slippery. The water molecules travel in chains because they interact with each other strongly via hydrogen bonds. These two effects (the slippery nanotube surface and formation of water molecule chains inside the nanotube) combine to produce this phenomenon of ultra-fast flow through carbon nanotubes.
Animation by Kwei-Yu Chu/LLNL - https://publicaffairs.llnl.gov/news/news_releases/2008/NR-08-06-03.html
FAST FLOW THROUGH CARBON NANOTUBES: The animation starts with the depiction of the water flow through a regular "rough" pipe. The molecules near the wall stick to it and move much slower than the molecules in the middle of the pipe. Colors indicate the speed of the molecules -- green are fast, yellow are slower, red are the slowest. The rough pipe fades and the carbon nanotube appears. All the molecules in the carbon nanotube move fast (green). They do not stick to the surface of the nanotube because that surface is very slippery. The water molecules travel in chains because they interact with each other strongly via hydrogen bonds. These two effects (the slippery nanotube surface and formation of water molecule chains inside the nanotube) combine to produce this phenomenon of ultra-fast flow through carbon nanotubes.
Animation by Kwei-Yu Chu/LLNL - https://publicaffairs.llnl.gov/news/news_releases/2008/NR-08-06-03.html

Abstract:
Molecular transport across cellular membranes is essential to many of life's processes, for example electrical signaling in nerves, muscles and synapses.

In biological systems, the membranes often contain a slippery inner surface with selective filter regions made up of specialized protein channels of sub-nanometer size. These pores regulate cellular traffic, allowing some of the smallest molecules in the world to traverse the membrane extremely quickly, while at the same time rejecting other small molecules and ions.

Livermore researchers use carbon nanotubes for molecular transport

LIVERMORE, CA | Posted on June 9th, 2008

Researchers at Lawrence Livermore National Laboratory are mimicking that process with manmade carbon nanotube membranes, which have pores that are 100,000 times smaller than a human hair, and were able to determine the rejection mechanism within the pores.

"Hydrophobic, narrow diameter carbon nanotubes can provide a simplified model of membrane channels by reproducing these critical features in a simpler and more robust platform," said Olgica Bakajin, who led the LLNL team whose study appeared in the June 6 online edition of the journal Proceedings of the National Academy of Sciences.

In the initial discovery, reported in the May 19, 2006 issue of the journal Science, the LLNL team found that water molecules in a carbon nanotube move fast and do not stick to the nanotube's super smooth surface, much like water moves through biological channels. The water molecules travel in chains - because they interact with each other strongly via hydrogen bonds.

"You can visualize it as mini-freight trains of chain-bonded water molecules flying at high speed through a narrow nanotube tunnel," said Hyung Gyu Park, an LLNL postdoctoral researcher and a team member.

One of the most promising applications for carbon nanotube membranes is sea water desalination. These membranes will some day be able to replace conventional membranes and greatly reduce energy use for desalination.

In the recent study, the researchers wanted to find out if the membranes with 1.6 nanometer (nm) pores reject ions that make up common salts. In fact, the pores did reject the ions and the team was able to understand the rejection mechanism.

"Our study showed that pores with a diameter of 1.6nm on the average, the salts get rejected due to the charge at the ends of the carbon nanotubes," said Francesco Fornasiero, an LLNL postdoctoral researcher, team member and the study's first author

Fast flow through carbon nanotube pores makes nanotube membranes more permeable than other membranes with the same pore sizes. Yet, just like conventional membranes, nanotube membranes exclude ions and other particles due to a combination of small pore size and pore charge effects.

"While carbon nanotube membranes can achieve similar rejection as membranes with similarly sized pores, they will provide considerably higher permeability, which makes them potentially much more efficient than the current generation of membranes," said Aleksandr Noy, a senior member of the LLNL team.

Researchers will be able to build better membranes when they can independently change pore diameter, charge and material that fills gaps between carbon nanotubes.

####

About Lawrence Livermore National Laboratory
Founded in 1952, Lawrence Livermore National Laboratory is a national security laboratory, with a mission to ensure national security and apply science and technology to the important issues of our time. Lawrence Livermore National Laboratory is managed by Lawrence Livermore National Security, LLC for the U.S. Department of Energy's National Nuclear Security Administration.

For more information, please click here

Contacts:
Anne M. Stark
(925) 422-9799

Copyright © Lawrence Livermore National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Seeking Nanoscale Defenses for Biological and Chemical Threats: WPI co-organizes a NATO workshop to improve the detection and decontamination of biological and chemical agents September 13th, 2014

New pricing report for bulk graphene materials September 13th, 2014

Berkeley Lab Licenses Boron Nitride Nanotube Technology: New material has unique mechanical and electronic properties September 13th, 2014

Iranian Nano Scientists Create Flame-Resistant Polymers September 13th, 2014

Videos/Movies

RMIT delivers $30m boost to micro and nano-tech August 26th, 2014

The channel that relaxes DNA: Relaxing DNA strands by using nano-channels: Instructions for use August 20th, 2014

“Active” surfaces control what’s on them: Researchers develop treated surfaces that can actively control how fluids or particles move August 6th, 2014

New Method Provides Nanoscale Details of Electrochemical Reactions in Electric Vehicle Battery Materials August 4th, 2014

Nanotubes/Buckyballs

Berkeley Lab Licenses Boron Nitride Nanotube Technology: New material has unique mechanical and electronic properties September 13th, 2014

Global Energy Systems Signs Master Sales Agreement with China Aviation Supplies Group September 4th, 2014

Breakthrough for Carbon Nanotube Solar Cells: Polychiral carbon nanotube mixture absorbs more sunlight September 3rd, 2014

SouthWest NanoTechnologies CEO Dave Arthur to Discuss “Carbon Nanotubes and Automotive Applications” at The Automotive Composites Conference and Expo 2014 (ACCE2014) August 28th, 2014

Discoveries

Iranian Nano Scientists Create Flame-Resistant Polymers September 13th, 2014

Boosting armor for nuclear-waste eating microbes September 12th, 2014

Ceramics don't have to be brittle: Caltech materials scientists are creating materials by design September 11th, 2014

Researchers Create World’s Largest DNA Origami September 11th, 2014

Announcements

Seeking Nanoscale Defenses for Biological and Chemical Threats: WPI co-organizes a NATO workshop to improve the detection and decontamination of biological and chemical agents September 13th, 2014

New pricing report for bulk graphene materials September 13th, 2014

Berkeley Lab Licenses Boron Nitride Nanotube Technology: New material has unique mechanical and electronic properties September 13th, 2014

Iranian Nano Scientists Create Flame-Resistant Polymers September 13th, 2014

Water

Malvern Instruments & Aurora Water conference presentation illustrates value and cost-saving potential of on-line zeta potential in water treatment: 2014 RMSAWWA/RMWEA Joint Annual Conference, Albuquerque, New Mexico, USA September 7th – 10th September 3rd, 2014

New Nanosorbent Helps Elimination of Colorants from Textile Wastewater August 25th, 2014

Eco-friendly 'pre-fab nanoparticles' could revolutionize nano manufacturing: UMass Amherst team invents a way to create versatile, water-soluble nano-modules August 13th, 2014

PerkinElmer to Display Innovative Detection and Informatics Offerings at ACS National Meeting & Exposition Detection, Data Visualization and Analytics for Chemistry Professionals August 8th, 2014

Nanobiotechnology

NanoStruck has a High Recovery Rate on Mine Tailings: retrieval of up to 96% of Gold, 88% of Silver and 86% of Palladium September 12th, 2014

Boosting armor for nuclear-waste eating microbes September 12th, 2014

Researchers Create World’s Largest DNA Origami September 11th, 2014

UO-Berkeley Lab unveil new nano-sized synthetic scaffolding technique: Oil-and-water approach from Richmond's UO lab to spark new line of versatile peptoid nanosheets September 2nd, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE