Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Livermore researchers use carbon nanotubes for molecular transport

FAST FLOW THROUGH CARBON NANOTUBES: The animation starts with the depiction of the water flow through a regular "rough" pipe. The molecules near the wall stick to it and move much slower than the molecules in the middle of the pipe. Colors indicate the speed of the molecules -- green are fast, yellow are slower, red are the slowest.
The rough pipe fades and the carbon nanotube appears. All the molecules in the carbon nanotube move fast (green). They do not stick to the surface of the nanotube because that surface is very slippery. The water molecules travel in chains because they interact with each other strongly via hydrogen bonds. These two effects (the slippery nanotube surface and formation of water molecule chains inside the nanotube) combine to produce this phenomenon of ultra-fast flow through carbon nanotubes.
Animation by Kwei-Yu Chu/LLNL - https://publicaffairs.llnl.gov/news/news_releases/2008/NR-08-06-03.html
FAST FLOW THROUGH CARBON NANOTUBES: The animation starts with the depiction of the water flow through a regular "rough" pipe. The molecules near the wall stick to it and move much slower than the molecules in the middle of the pipe. Colors indicate the speed of the molecules -- green are fast, yellow are slower, red are the slowest. The rough pipe fades and the carbon nanotube appears. All the molecules in the carbon nanotube move fast (green). They do not stick to the surface of the nanotube because that surface is very slippery. The water molecules travel in chains because they interact with each other strongly via hydrogen bonds. These two effects (the slippery nanotube surface and formation of water molecule chains inside the nanotube) combine to produce this phenomenon of ultra-fast flow through carbon nanotubes.
Animation by Kwei-Yu Chu/LLNL - https://publicaffairs.llnl.gov/news/news_releases/2008/NR-08-06-03.html

Abstract:
Molecular transport across cellular membranes is essential to many of life's processes, for example electrical signaling in nerves, muscles and synapses.

In biological systems, the membranes often contain a slippery inner surface with selective filter regions made up of specialized protein channels of sub-nanometer size. These pores regulate cellular traffic, allowing some of the smallest molecules in the world to traverse the membrane extremely quickly, while at the same time rejecting other small molecules and ions.

Livermore researchers use carbon nanotubes for molecular transport

LIVERMORE, CA | Posted on June 9th, 2008

Researchers at Lawrence Livermore National Laboratory are mimicking that process with manmade carbon nanotube membranes, which have pores that are 100,000 times smaller than a human hair, and were able to determine the rejection mechanism within the pores.

"Hydrophobic, narrow diameter carbon nanotubes can provide a simplified model of membrane channels by reproducing these critical features in a simpler and more robust platform," said Olgica Bakajin, who led the LLNL team whose study appeared in the June 6 online edition of the journal Proceedings of the National Academy of Sciences.

In the initial discovery, reported in the May 19, 2006 issue of the journal Science, the LLNL team found that water molecules in a carbon nanotube move fast and do not stick to the nanotube's super smooth surface, much like water moves through biological channels. The water molecules travel in chains - because they interact with each other strongly via hydrogen bonds.

"You can visualize it as mini-freight trains of chain-bonded water molecules flying at high speed through a narrow nanotube tunnel," said Hyung Gyu Park, an LLNL postdoctoral researcher and a team member.

One of the most promising applications for carbon nanotube membranes is sea water desalination. These membranes will some day be able to replace conventional membranes and greatly reduce energy use for desalination.

In the recent study, the researchers wanted to find out if the membranes with 1.6 nanometer (nm) pores reject ions that make up common salts. In fact, the pores did reject the ions and the team was able to understand the rejection mechanism.

"Our study showed that pores with a diameter of 1.6nm on the average, the salts get rejected due to the charge at the ends of the carbon nanotubes," said Francesco Fornasiero, an LLNL postdoctoral researcher, team member and the study's first author

Fast flow through carbon nanotube pores makes nanotube membranes more permeable than other membranes with the same pore sizes. Yet, just like conventional membranes, nanotube membranes exclude ions and other particles due to a combination of small pore size and pore charge effects.

"While carbon nanotube membranes can achieve similar rejection as membranes with similarly sized pores, they will provide considerably higher permeability, which makes them potentially much more efficient than the current generation of membranes," said Aleksandr Noy, a senior member of the LLNL team.

Researchers will be able to build better membranes when they can independently change pore diameter, charge and material that fills gaps between carbon nanotubes.

####

About Lawrence Livermore National Laboratory
Founded in 1952, Lawrence Livermore National Laboratory is a national security laboratory, with a mission to ensure national security and apply science and technology to the important issues of our time. Lawrence Livermore National Laboratory is managed by Lawrence Livermore National Security, LLC for the U.S. Department of Energy's National Nuclear Security Administration.

For more information, please click here

Contacts:
Anne M. Stark
(925) 422-9799

Copyright © Lawrence Livermore National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Scientists discover new 'boat' form of promising semiconductor: GeSe Uncommon form attenuates semiconductor's band gap size March 23rd, 2017

Caught on camera -- chemical reactions 'filmed' at the single-molecule level March 22nd, 2017

Videos/Movies

Researchers develop groundbreaking process for creating ultra-selective separation membranes: Discovery could greatly improve energy-efficiency of separation and purification processes in the chemical and petrochemical industries March 15th, 2017

Rice lab expands palette for color-changing glass: Nanophotonics team creates low-voltage, multicolor, electrochromic glass March 8th, 2017

Water-Repellent Nanotextures Found to Have Excellent Anti-Fogging Abilities: Cone-shaped nanotextures could prevent fog condensation on surfaces in humid environments, including for power generation and transportation applications March 2nd, 2017

Triboelectric Nanogenerators Boost Mass Spectrometry Performance March 1st, 2017

Nanotubes/Buckyballs/Fullerenes

Intertronics introduce new nanoparticle deagglomeration technology March 15th, 2017

Boron atoms stretch out, gain new powers: Rice University simulations demonstrate 1-D material's stiffness, electrical versatility January 26th, 2017

New stem cell technique shows promise for bone repair January 25th, 2017

Captured on video: DNA nanotubes build a bridge between 2 molecular posts: Research may lead to new lines of direct communication with cells January 9th, 2017

Discoveries

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Scientists discover new 'boat' form of promising semiconductor: GeSe Uncommon form attenuates semiconductor's band gap size March 23rd, 2017

Caught on camera -- chemical reactions 'filmed' at the single-molecule level March 22nd, 2017

Announcements

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Scientists discover new 'boat' form of promising semiconductor: GeSe Uncommon form attenuates semiconductor's band gap size March 23rd, 2017

Caught on camera -- chemical reactions 'filmed' at the single-molecule level March 22nd, 2017

Water

Rare-earths become water-repellent only as they age March 22nd, 2017

Nano-level lubricant tuning improves material for electronic devices and surface coatings February 11th, 2017

Tough aqua material for water purification: Decontamination of water with a robust and sustainable membrane assembled from 2 synergistically working components January 24th, 2017

Scientists have discovered a new state of matter for water January 2nd, 2017

Nanobiotechnology

Nanoparticle paves the way for new triple negative breast cancer drug March 20th, 2017

Block copolymer micellization as a protection strategy for DNA origami March 17th, 2017

Nanocages for gold particles: what is happening inside? March 16th, 2017

Biophysicists propose new approach for membrane protein crystallization March 8th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project