Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Super-sensitive and small: New MIT detector uses nanotubes to sense deadly gases

Image / Chang Young Lee
MIT researchers are designing sensors that use carbon nanotubes, shown here in middle and at top, to detect hazardous gases.
Image / Chang Young Lee

MIT researchers are designing sensors that use carbon nanotubes, shown here in middle and at top, to detect hazardous gases.

Abstract:
Using carbon nanotubes, MIT chemical engineers have built the most sensitive electronic detector yet for sensing deadly gases such as the nerve agent sarin.

Super-sensitive and small: New MIT detector uses nanotubes to sense deadly gases

Cambridge, MA | Posted on June 9th, 2008

The technology, which could also detect mustard gas, ammonia and VX nerve agents, has potential to be used as a low-cost, low-energy device that could be carried in a pocket or deployed inside a building to monitor hazardous chemicals.

"We think this could be applied to a variety of environmental and security applications," said Michael Strano, the Charles and Hilda Roddey Associate Professor of Chemical Engineering and senior author of a paper describing the work published this week in the online edition of Angewandte Chemie.

Strano's sensor has exhibited record sensitivity to molecules mimicking organophosphate nerve toxins such as sarin: It can detect minute quantities as low as 1 femtomole (1 billion molecules), roughly equivalent to a concentration of 25 parts per trillion. "There's nothing that even comes close," he said.

Sarin, which killed 12 people in a 1995 terrorist attack on the Tokyo subway, can kill at very low concentrations (parts per million) after 10 minutes, so highly sensitive detection is imperative to save lives. The new detector is far more sensitive than needed to detect lethal doses.

To build their super-sensitive detector, Strano and his team used an array of carbon nanotubes aligned across microelectrodes. Each tube consists of a single-layer lattice of carbon atoms, rolled into a long cylinder with a diameter about 1/50,000 of the width of a human hair, which acts as a molecular wire.

The nanotube sensors require very little power--about 0.0003 watts. One sensor could run essentially forever on a regular battery. "It's something that could sit in the corner of a room and you could just forget about it," Strano said.

When a particular gas molecule binds to the carbon nanotube, the tube's electrical conductivity changes. Each gas affects conductivity differently, so gases can be identified by measuring the conductivity change after binding.

The researchers achieved new levels of sensitivity by coupling the nanotubes with a miniature gas-chromatography column etched onto a silicon chip smaller than a penny. The column rapidly separates different gases before feeding them into the nanotubes.

The new MIT sensor is also the first nanotube sensor that is passively reversible at this level of sensitivity. To achieve this, the team needed to decrease how strongly the nanotube sensor binds different gas molecules on its surface, allowing the sensor to detect a series of gas exposures in rapid succession.

Using a newly described chemistry outlined in a separate paper published in January in the Journal of the American Chemical Society, Strano and co-workers showed that this can be done by coating the nanotubes with amine-type molecules, which donate an extra pair of electrons to the nanotubes.

The coating allows gas molecules to bind to nanotubes but detach a few milliseconds later, allowing another molecule from the column to move in. With a network of these reversible sensors, a gas could be tracked as it spreads through a large area.

The lead author of the paper is Chang Young Lee, a graduate student in chemical engineering. Richa Sharma, another MIT graduate student in chemical engineering, is also an author of the paper. Adarsh Radadia and Richard Masel at the University of Illinois at Urbana-Champaign developed the microcolumn technology.

The work was funded by the Department of Homeland Security under contract to the Federal Aviation Administration and MIT's Institute of Soldier Nanotechnology. Characterization facilities used for this work were supported by the Department of Energy. Microcolumn and detector development was funded in part by the Defense Advanced Research Projects Agency.

####

About MIT
The mission of MIT is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the 21st century.

For more information, please click here

Contacts:
Elizabeth A. Thomson
MIT News Office
Phone: 617-258-5402
E-mail:

Copyright © MIT

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Prototype 'nanoneedles' generate new blood vessels in mice: Scientists have developed tiny 'nanoneedles' that have successfully prompted parts of the body to generate new blood vessels, in a trial in mice March 31st, 2015

Super sensitive measurement of magnetic fields March 31st, 2015

Nanomedicine pioneer Mauro Ferrari at ETH Zurich March 31st, 2015

From tobacco to cyberwood March 31st, 2015

Nanotubes/Buckyballs

From tobacco to cyberwood March 31st, 2015

Wrapping carbon nanotubes in polymers enhances their performance: Scientists at Japan's Kyushu University say polymer-wrapped carbon nanotubes hold much promise in biotechnology and energy applications March 30th, 2015

Carbon nanotube fibers make superior links to brain: Rice University invention provides two-way communication with neurons March 25th, 2015

Iranian Scientists Eliminate Expensive Materials from Diabetes Diagnosis Sensors March 25th, 2015

Sensors

From tobacco to cyberwood March 31st, 2015

UW scientists build a nanolaser using a single atomic sheet March 24th, 2015

Iranian Researchers Present Model to Determine Dynamic Behavior of Nanostructures March 24th, 2015

Nanodevice Invented in Iran to Detect Hydrogen Sulfide in Oil, Gas Industry March 20th, 2015

Discoveries

Prototype 'nanoneedles' generate new blood vessels in mice: Scientists have developed tiny 'nanoneedles' that have successfully prompted parts of the body to generate new blood vessels, in a trial in mice March 31st, 2015

Super sensitive measurement of magnetic fields March 31st, 2015

From tobacco to cyberwood March 31st, 2015

Next important step toward quantum computer: Scientists at the University of Bonn have succeeded in linking 2 different quantum systems March 30th, 2015

Announcements

Prototype 'nanoneedles' generate new blood vessels in mice: Scientists have developed tiny 'nanoneedles' that have successfully prompted parts of the body to generate new blood vessels, in a trial in mice March 31st, 2015

Super sensitive measurement of magnetic fields March 31st, 2015

Nanomedicine pioneer Mauro Ferrari at ETH Zurich March 31st, 2015

From tobacco to cyberwood March 31st, 2015

Homeland Security

The Universitat Politècnica de València is coordinating a European project to develop a device for the quick and early diagnosis of cancer March 7th, 2015

Detecting chemical weapons with a color-changing film January 28th, 2015

Detection of Heavy Metals in Samples with Naked Eye January 26th, 2015

Detecting gases wirelessly and cheaply: New sensor can transmit information on hazardous chemicals or food spoilage to a smartphone December 8th, 2014

Military

Nanoscale worms provide new route to nano-necklace structures March 29th, 2015

UT Dallas engineers twist nanofibers to create structures tougher than bulletproof vests March 27th, 2015

Novel nanoparticle therapy promotes wound healing March 27th, 2015

Thousands of atoms entangled with a single photon: Result could make atomic clocks more accurate March 26th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE