Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > News > Cell 'organs' get plastic upgrades

June 6th, 2008

Cell 'organs' get plastic upgrades

Abstract:
Human cells could have their metabolisms upgraded without altering their genes by inserting tiny plastic packages of enzymes, Swiss researchers have shown. They hope the technique could allow advanced cancer therapies, or even upgrade a person's metabolism.

The cells of multi-cellular organisms and some advanced single-celled organisms have internal compartments called organelles to carry out specialised metabolic functions. Researchers at University of Basel, Switzerland, used artificial polymer organelles to upgrade live human cells in a lab dish.

Meier and colleagues coated their polymer vesicles in a chemical that encouraged human white blood cells called macrophages to engulf them. The small capsules contained enzymes, just like natural organelles. The enzymes chosen produced fluorescent chemicals, signalling they were working without problems inside their new host.

The artificial organelle's membrane can be chemically tuned to control which chemicals can pass through it and regulate the reactions inside, according to Wolfgang Meier, one of the researchers. "We call it a 'nanoreactor'," he says.

At 200 nanometres across, the organelles are 400 times smaller in width than a human hair.

Source:
technology.newscientist.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

Researchers developed nanoparticle based contrast agent for dual modal imaging of cancer June 21st, 2017

Nanomedicine

Researchers developed nanoparticle based contrast agent for dual modal imaging of cancer June 21st, 2017

Learning with light: New system allows optical “deep learning”: Neural networks could be implemented more quickly using new photonic technology June 12th, 2017

Mussels add muscle to biocompatible fibers: Rice University chemists develop hydrogel strings using compound found in sea creatures June 9th, 2017

Making vessels leaky on demand could aid drug delivery:Rice University scientists use magnets and nanoparticles to open, close gaps in blood vessels June 8th, 2017

Discoveries

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

Researchers developed nanoparticle based contrast agent for dual modal imaging of cancer June 21st, 2017

Announcements

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

Researchers developed nanoparticle based contrast agent for dual modal imaging of cancer June 21st, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project