Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Argonne research unveiling the secrets of nanoparticle haloing

Abstract:
A glass of milk, a gallon of paint and a bottle of salad dressing all look to the naked eye like liquids. But when viewed under a microscope these everyday liquids, called "colloids," actually contain small globules or particles that stay suspended in solution.

Argonne research unveiling the secrets of nanoparticle haloing

ARGONNE, IL | Posted on June 5th, 2008

Colloids require a delicate balance of opposing forces for them to be stable: attractive forces must match repulsive ones. A new colloidal stabilization method characterized by scientists at the U.S. Department of Energy's (DOE) Argonne National Laboratory may give scientists a new way to control the stability of some colloidal suspensions.

In this approach, known as nanoparticle haloing, highly charged nanoparticles and negligibly charged colloidal microspheres are mixed together in solution. The nanoparticles self-organize around the microspheres to form a halo-like structure that stabilizes the solution. This new pathway to produce materials would not be possible through traditional routes.

The structure of the halo-the key to understanding this kind of stable colloid-has remained a mystery because the nanoparticles that form it are more than 100 times smaller than the microspheres they surround.

By using X-rays produced by Argonne's Advanced Photon Source (APS), Argonne scientists, in collaboration with researchers from the University of Illinois at Urbana-Champaign, were able to finally discover the structure of the nanoparticle halo.

The researchers used the ultra-small-angle X-ray scattering instrument at the APS to discover that nanoparticles form a loosely organized layer a small distance from the microspheres' surfaces. This discovery suggests a weak attraction between nanoparticle and microsphere, corroborating earlier theoretical predictions that the halo can form only in such an environment.

"Because we have established a methodology to determine the structure of nanoparticle halo, it opens a window to the systematic study of the entire nanoparticle-microsphere phase diagram for this type of novel colloidal stabilization mechanism," said Argonne's Fan Zhang, a coauthor on the Langmuir paper.

####

About Argonne National Laboratory
Argonne National Laboratory brings the world's brightest scientists and engineers together to find exciting and creative new solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

For more information, please click here

Contacts:
Steve McGregor
630/252-5580

Copyright © Argonne National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

UTHealth research looks at nanotechnology to help prevent preterm birth February 7th, 2016

Graphene is strong, but is it tough? Berkeley Lab scientists find that polycrystalline graphene is not very resistant to fracture February 7th, 2016

Lithium battery catalyst found to harm key soil microorganism February 7th, 2016

Scientists take key step toward custom-made nanoscale chemical factories: Berkeley Lab researchers part of team that creates new function in tiny protein shell structures February 6th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Lithium battery catalyst found to harm key soil microorganism February 7th, 2016

Scientists take key step toward custom-made nanoscale chemical factories: Berkeley Lab researchers part of team that creates new function in tiny protein shell structures February 6th, 2016

Hepatitis virus-like particles as potential cancer treatment February 5th, 2016

Researchers discover new phase of boron nitride and a new way to create pure c-BN February 5th, 2016

Self Assembly

New type of nanowires, built with natural gas heating: UNIST research team developed a new simple nanowire manufacturing technique February 1st, 2016

Researchers develop completely new kind of polymer: Hybrid polymers could lead to new concepts in self-repairing materials, drug delivery and artificial muscles January 30th, 2016

Polymer nanowires that assemble in perpendicular layers could offer route to tinier chip components January 23rd, 2016

Nanodevice, build thyself: Researchers in Germany studied how a multitude of electronic interactions govern the encounter between a molecule called porphine and copper and silver surfaces January 18th, 2016

Discoveries

UTHealth research looks at nanotechnology to help prevent preterm birth February 7th, 2016

Graphene is strong, but is it tough? Berkeley Lab scientists find that polycrystalline graphene is not very resistant to fracture February 7th, 2016

Lithium battery catalyst found to harm key soil microorganism February 7th, 2016

Scientists take key step toward custom-made nanoscale chemical factories: Berkeley Lab researchers part of team that creates new function in tiny protein shell structures February 6th, 2016

Announcements

UTHealth research looks at nanotechnology to help prevent preterm birth February 7th, 2016

Graphene is strong, but is it tough? Berkeley Lab scientists find that polycrystalline graphene is not very resistant to fracture February 7th, 2016

Lithium battery catalyst found to harm key soil microorganism February 7th, 2016

Scientists take key step toward custom-made nanoscale chemical factories: Berkeley Lab researchers part of team that creates new function in tiny protein shell structures February 6th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic