Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Argonne research unveiling the secrets of nanoparticle haloing

Abstract:
A glass of milk, a gallon of paint and a bottle of salad dressing all look to the naked eye like liquids. But when viewed under a microscope these everyday liquids, called "colloids," actually contain small globules or particles that stay suspended in solution.

Argonne research unveiling the secrets of nanoparticle haloing

ARGONNE, IL | Posted on June 5th, 2008

Colloids require a delicate balance of opposing forces for them to be stable: attractive forces must match repulsive ones. A new colloidal stabilization method characterized by scientists at the U.S. Department of Energy's (DOE) Argonne National Laboratory may give scientists a new way to control the stability of some colloidal suspensions.

In this approach, known as nanoparticle haloing, highly charged nanoparticles and negligibly charged colloidal microspheres are mixed together in solution. The nanoparticles self-organize around the microspheres to form a halo-like structure that stabilizes the solution. This new pathway to produce materials would not be possible through traditional routes.

The structure of the halo-the key to understanding this kind of stable colloid-has remained a mystery because the nanoparticles that form it are more than 100 times smaller than the microspheres they surround.

By using X-rays produced by Argonne's Advanced Photon Source (APS), Argonne scientists, in collaboration with researchers from the University of Illinois at Urbana-Champaign, were able to finally discover the structure of the nanoparticle halo.

The researchers used the ultra-small-angle X-ray scattering instrument at the APS to discover that nanoparticles form a loosely organized layer a small distance from the microspheres' surfaces. This discovery suggests a weak attraction between nanoparticle and microsphere, corroborating earlier theoretical predictions that the halo can form only in such an environment.

"Because we have established a methodology to determine the structure of nanoparticle halo, it opens a window to the systematic study of the entire nanoparticle-microsphere phase diagram for this type of novel colloidal stabilization mechanism," said Argonne's Fan Zhang, a coauthor on the Langmuir paper.

####

About Argonne National Laboratory
Argonne National Laboratory brings the world's brightest scientists and engineers together to find exciting and creative new solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

For more information, please click here

Contacts:
Steve McGregor
630/252-5580

Copyright © Argonne National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Fast, stretchy circuits could yield new wave of wearable electronics May 30th, 2016

Automating DNA origami opens door to many new uses: Like 3-D printing did for larger objects, method makes it easy to build nanoparticles out of DNA May 30th, 2016

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Harnessing solar and wind energy in one device could power the 'Internet of Things' May 26th, 2016

Thermal modification of wood and a complex study of its properties by magnetic resonance May 26th, 2016

Self Assembly

Automating DNA origami opens door to many new uses: Like 3-D printing did for larger objects, method makes it easy to build nanoparticles out of DNA May 30th, 2016

Searching for a nanotech self-organizing principle May 1st, 2016

Researchers create artificial protein to control assembly of buckyballs April 27th, 2016

Brookhaven's Oleg Gang Named a Battelle 'Inventor of the Year': Recognized for work using DNA to guide and regulate the self-assembly of nanoparticles into clusters and arrays with controllable properties April 25th, 2016

Discoveries

Fast, stretchy circuits could yield new wave of wearable electronics May 30th, 2016

Automating DNA origami opens door to many new uses: Like 3-D printing did for larger objects, method makes it easy to build nanoparticles out of DNA May 30th, 2016

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Announcements

Fast, stretchy circuits could yield new wave of wearable electronics May 30th, 2016

Automating DNA origami opens door to many new uses: Like 3-D printing did for larger objects, method makes it easy to build nanoparticles out of DNA May 30th, 2016

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic