Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Argonne research unveiling the secrets of nanoparticle haloing

Abstract:
A glass of milk, a gallon of paint and a bottle of salad dressing all look to the naked eye like liquids. But when viewed under a microscope these everyday liquids, called "colloids," actually contain small globules or particles that stay suspended in solution.

Argonne research unveiling the secrets of nanoparticle haloing

ARGONNE, IL | Posted on June 5th, 2008

Colloids require a delicate balance of opposing forces for them to be stable: attractive forces must match repulsive ones. A new colloidal stabilization method characterized by scientists at the U.S. Department of Energy's (DOE) Argonne National Laboratory may give scientists a new way to control the stability of some colloidal suspensions.

In this approach, known as nanoparticle haloing, highly charged nanoparticles and negligibly charged colloidal microspheres are mixed together in solution. The nanoparticles self-organize around the microspheres to form a halo-like structure that stabilizes the solution. This new pathway to produce materials would not be possible through traditional routes.

The structure of the halo-the key to understanding this kind of stable colloid-has remained a mystery because the nanoparticles that form it are more than 100 times smaller than the microspheres they surround.

By using X-rays produced by Argonne's Advanced Photon Source (APS), Argonne scientists, in collaboration with researchers from the University of Illinois at Urbana-Champaign, were able to finally discover the structure of the nanoparticle halo.

The researchers used the ultra-small-angle X-ray scattering instrument at the APS to discover that nanoparticles form a loosely organized layer a small distance from the microspheres' surfaces. This discovery suggests a weak attraction between nanoparticle and microsphere, corroborating earlier theoretical predictions that the halo can form only in such an environment.

"Because we have established a methodology to determine the structure of nanoparticle halo, it opens a window to the systematic study of the entire nanoparticle-microsphere phase diagram for this type of novel colloidal stabilization mechanism," said Argonne's Fan Zhang, a coauthor on the Langmuir paper.

####

About Argonne National Laboratory
Argonne National Laboratory brings the world's brightest scientists and engineers together to find exciting and creative new solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

For more information, please click here

Contacts:
Steve McGregor
630/252-5580

Copyright © Argonne National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Enhancing the quantum sensing capabilities of diamond: Shooting electrons at diamonds can introduce quantum sensors into them November 24th, 2017

NanoSummit in Luxembourg: single wall carbon nanotubes have entered our lives as we approach a nanoaugmented future November 23rd, 2017

JPK reports on the exciting research in the School of Medicine at Sungkyunkwan University (SKKU), Suwon, South Korea using the NanoWizard® ULTRA Speed AFM to understand the binding of transcription factor Sox2 with super enhancers November 23rd, 2017

Precision NanoSystems to host nanomedicines roundtable November 23rd, 2017

Govt.-Legislation/Regulation/Funding/Policy

Enhancing the quantum sensing capabilities of diamond: Shooting electrons at diamonds can introduce quantum sensors into them November 24th, 2017

EC Project Aims at Creating and Commercializing Cyber-Physical-System Solutions November 14th, 2017

Nanobiotix presented new clinical and pre-clinical data confirming NBTXR3’s significant potential role in Immuno-Oncology at SITC Annual Meeting November 14th, 2017

Leti Joins DARPA-Funded Project to Develop Implantable Device for Restoring Vision November 9th, 2017

Self Assembly

Physicists gain new insights into nanosystems with spherical confinement: Enormous potential for the targeted delivery of pharmaceutical agents and the creation of tailored nanoparticles July 27th, 2017

Oddball enzyme provides easy path to synthetic biomaterials May 17th, 2017

Nanotubes that build themselves April 14th, 2017

Nanocages for gold particles: what is happening inside? March 16th, 2017

Discoveries

Enhancing the quantum sensing capabilities of diamond: Shooting electrons at diamonds can introduce quantum sensors into them November 24th, 2017

Fine felted nanotubes : Research team of Kiel University develops new composite material made of carbon nanotubes November 22nd, 2017

Quantum optics allows us to abandon expensive lasers in spectroscopy: Lomonosov Moscow State University scientists have invented a new method of spectroscopy November 21st, 2017

Nano-watch has steady hands November 21st, 2017

Announcements

Enhancing the quantum sensing capabilities of diamond: Shooting electrons at diamonds can introduce quantum sensors into them November 24th, 2017

NanoSummit in Luxembourg: single wall carbon nanotubes have entered our lives as we approach a nanoaugmented future November 23rd, 2017

JPK reports on the exciting research in the School of Medicine at Sungkyunkwan University (SKKU), Suwon, South Korea using the NanoWizard® ULTRA Speed AFM to understand the binding of transcription factor Sox2 with super enhancers November 23rd, 2017

Precision NanoSystems to host nanomedicines roundtable November 23rd, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project