Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Brown researchers work toward ending cartilage loss

Abstract:
Brown University nanotechnology engineer Thomas Webster has published a first-ever study that shows how a surface of carbon nanotubes combined with electrical pulses could help regenerate cartilage naturally in the body.

Brown researchers work toward ending cartilage loss

Providence, RI | Posted on June 5th, 2008

Scientists have long wrestled with how to aid those who suffer cartilage damage and loss. One popular way is to inject an artificial gel that can imitate cartilage's natural ability to act as the body's shock absorber. But that solution is temporary, requiring follow-up injections.

Now Brown University nanotechnology specialist Thomas Webster has found a way to regenerate cartilage naturally by creating a synthetic surface that attracts cartilage-forming cells. These cells are then coaxed to multiply through electrical pulses. It's the first study that has shown enhanced cartilage regeneration using this method; it appears in the current issue of the Journal of Biomedical Materials Research, Part A.

"Cartilage regeneration is a big problem," said Webster, an associate professor in the Division of Engineering and the Department of Orthopaedics at Brown. "You don't feel pain until significant cartilage damage has occurred and it's bone rubbing on bone. That's why research into how to regenerate cartilage is so important."

Webster's work involves carbon nanotubes, which are molecular-scale tubes of graphitic carbon that are among the stiffest and strongest fibers known and are great conductors of electrons. They are being studied intensively worldwide for a range of commercial, industrial and medical uses.

Webster and his team, including Brown researcher Dongwoo Khang and Grace Park from Purdue University, found that the tubes, due to their unique surface properties, work well for stimulating cartilage-forming cells, known scientifically as chondrocytes. The nanotube's surface is rough; viewed under a microscope, it looks like a bumpy landscape. Yet that uneven surface closely resembles the contours of natural tissue, so cartilage cells see it as a natural environment to colonize.

"We're tricking the body, so to speak," Webster said. "It all goes back to the fact that the nanotubes are mimicking the natural roughness of tissues in the first place."

Previous research has involved using a micron surface, which is smoother at the nanoscale. Webster said his team's nanosurface works better than micron due to its roughness and because it can be shaped to fit the contours of the degenerated area, much like a Band-Aid.

The researchers also learned they could prod the cartilage cells to grow more densely by applying electrical pulses. Scientists don't completely understand why electricity seems to trigger cartilage growth, but they think it helps calcium ions enter a cell, and calcium is known to play an integral role in growing cartilage.

The team plans to test the cartilage regeneration method procedure with animals, and if that is successful, to conduct the research on humans.

Webster's cartilage regeneration studies parallel research he has done with bone regeneration and implants that was published last year in Nanotechnology. The principles are the same: Bone cells are more apt to adhere to a rough carbon nanotube surface than other surfaces and to colonize that surface. And tests by scientists in Japan and elsewhere have shown that electrical pulses stimulate bone cell growth.

The National Science Foundation, under the federal National Nanotechnology Initiative, funded the work.

####

About Brown University
Editors: Brown University has a fiber link television studio available for domestic and international live and taped interviews, and maintains an ISDN line for radio interviews. For more information, call (401) 863-2476.

For more information, please click here

Contacts:
Richard Lewis
(401) 863-3766

Copyright © Brown University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Transparent, electrically conductive network of encapsulated silver nanowires: A novel electrode for optoelectronics August 1st, 2015

Harris & Harris Group Portfolio Company, HZO, Announces Partnerships with Dell and Motorola August 1st, 2015

Advances and Applications in Biosensing, Sensor Power, and Sensor R&D to be Covered at Sensors Global Summit August 1st, 2015

Kalam: versatility personified August 1st, 2015

Nanotubes/Buckyballs/Fullerenes

Self-assembling, biomimetic membranes may aid water filtration August 1st, 2015

Controlling Dynamic Behavior of Carbon Nanosheets in Structures Made Possible July 30th, 2015

March 2016; 6th Int'l Conference on Nanostructures in Iran July 29th, 2015

Short wavelength plasmons observed in nanotubes: Berkeley Lab researchers create Ludinger liquid plasmons in metallic SWNTs July 28th, 2015

Nanomedicine

Gold-diamond nanodevice for hyperlocalised cancer therapy: Gold nanorods can be used as remote controlled nanoheaters delivering the right amount of thermal treatment to cancer cells, thanks to diamond nanocrystals used as temperature sensors August 1st, 2015

Heating and cooling with light leads to ultrafast DNA diagnostics July 31st, 2015

Take a trip through the brain July 30th, 2015

Sol-gel capacitor dielectric offers record-high energy storage July 30th, 2015

Discoveries

Gold-diamond nanodevice for hyperlocalised cancer therapy: Gold nanorods can be used as remote controlled nanoheaters delivering the right amount of thermal treatment to cancer cells, thanks to diamond nanocrystals used as temperature sensors August 1st, 2015

Shaping the hilly landscapes of a semi-conductor nanoworld August 1st, 2015

Solid state physics: Quantum matter stuck in unrest August 1st, 2015

Self-assembling, biomimetic membranes may aid water filtration August 1st, 2015

Announcements

Self-assembling, biomimetic membranes may aid water filtration August 1st, 2015

Transparent, electrically conductive network of encapsulated silver nanowires: A novel electrode for optoelectronics August 1st, 2015

Harris & Harris Group Portfolio Company, HZO, Announces Partnerships with Dell and Motorola August 1st, 2015

Advances and Applications in Biosensing, Sensor Power, and Sensor R&D to be Covered at Sensors Global Summit August 1st, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project