Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Nantero and SVTC Make Carbon-Nanotube Capability Available for Next-Generation Electronics

Abstract:
Nantero, Inc., a nanotechnology company using carbon nanotubes (CNTs) for the development of next-generation semiconductor devices, has announced collaboration with SVTC Technologies to accelerate the commercialization of nanotube-based electronics products. Nantero has developed a "CMOS-friendly" proprietary CNT process that it will install at SVTC's two state-of-the-art development fabs, in San Jose, Calif., and Austin, Texas.

Nantero and SVTC Make Carbon-Nanotube Capability Available for Next-Generation Electronics

WOBURN, MA | Posted on June 2nd, 2008

CNTs -- cylindrical carbon molecules about a nanometer across and up to a millimeter long -- exhibit extraordinary strength, unique electrical properties and efficient heat conduction. Due to their novel properties, CNTs hold tremendous promise for a variety of semiconductor, nanotechnology and optics applications. By making Nantero's proprietary CNT process available at SVTC's development fabs, the two companies hope to enable potential licensees of Nantero to develop and commercialize the use of CNTs in SVTC's IP-secure environment.

"By placing our CNT process module at SVTC, we are now able to support multiple co-development relationships across a growing array of CMOS-grade CNT devices," said Greg Schmergel, CEO of Nantero. "Our development partners now have the opportunity to develop CNT products with us in a third-party environment utilizing state-of-the-art capabilities that will transfer efficiently to their own production environments."

The companies' collaboration fits well with SVTC's broader mission to enable commercialization of new process and device developments in the semiconductor, MEMS and related nanotechnology domains with support for a direct path between the work completed in SVTC's facilities to high-volume manufacturing. CNTs represent an ideal area for SVTC because, currently, there is a huge gap between the promise of carbon nanotubes as demonstrated in research labs and their translation into commercial products that can be manufactured in high volumes.

Together, Nantero and SVTC can offer CNT device development capabilities for customers targeting a wide range of applications including photovoltaics (solar cells), LEDs, sensors, MEMS and other semiconductor-based devices.

"SVTC is delighted to welcome Nantero as a partner," said Dave Bergeron, SVTC's CEO. "We have seen interest in CNTs coming from a number of companies looking to integrate CNTs with CMOS. Together Nantero and SVTC have the technology and experience to accelerate their efforts."

####

About Nantero, Inc.
Nantero is a nanotechnology company using carbon nanotubes for the development of next-generation semiconductor devices. Nantero’s main focus is the development of NRAM™ universal memory. Nantero is also working with licensees on the development of additional applications of Nantero’s core nanotube-based technology. More information on Nantero, Inc., is available in English and Japanese at www.nantero.com.

About SVTC

SVTC Technologies, a leading independent semiconductor development foundry, enables the development and commercialization of innovative semiconductor-based technologies and products in an accelerated, cost-effective and IP-secure way. Since joining forces with ATDF, SVTC now offers an even more powerful suite of leading-edge equipment and services, including full-scale 8-inch and 12-inch process capabilities, advanced CMOS equipment, development support tools and commercialization services. SVTC's San Jose, Calif., facility and ATDF's Austin, Texas, facility deliver operational excellence and faster time to revenue, allowing customers to create real, manufacturing-ready products for rapidly growing markets such as MEMS/MOEMS, photovoltaics, biotech, novel memory and high-voltage applications. More information can be found at www.svtc.com.

For more information, please click here

Contacts:
Martell Communications (for SVTC)
Lisa Figlioli
203-625-0082

or
SGN Public Relations & Marketing (for Nantero)
Suzanne Gibbons-Neff
617-670-1763

Copyright © Business Wire 2008

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Revealing the nature of magnetic interactions in manganese oxide: New technique for probing local magnetic interactions confirms 'superexchange' model that explains how the material gets its long-range magnetic order May 25th, 2016

Gigantic ultrafast spin currents: Scientists from TU Wien (Vienna) are proposing a new method for creating extremely strong spin currents. They are essential for spintronics, a technology that could replace today's electronics May 25th, 2016

Diamonds closer to becoming ideal semiconductors: Researchers find new method for doping single crystals of diamond May 25th, 2016

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

Display technology/LEDs/SS Lighting/OLEDs

Nanotubes are beacons in cancer-imaging technique: Rice University researchers use spectral triangulation to pinpoint location of tumors May 21st, 2016

This 'nanocavity' may improve ultrathin solar panels, video cameras and more May 16th, 2016

New research shows how silver could be the key to gold-standard flexible gadgets: Silver nanowires are an ideal material for current and future flexible touch-screen technologies May 13th, 2016

First single-enzyme method to produce quantum dots revealed: Biological manufacturing process, pioneered by three Lehigh University engineers, produces equivalent quantum dots to those made chemically--but in a much greener, cheaper way May 9th, 2016

MEMS

New research unveils graphene 'moth eyes' to power future smart technologies: New ultra-thin, patterned graphene sheets will be essential in designing future technologies such as 'smart wallpaper' and Internet-of-things applications March 1st, 2016

Vesper Collaborates with GLOBALFOUNDRIES to Deliver First Piezoelectric MEMS Microphones: Acoustic sensing company works with top foundry to support mass-market consumer products January 21st, 2016

MEMS & Sensors Industry Group Previews “Internet of MEMS & Sensors” at CES 2016 -- Global industry association invites CE OEMS/integrators to conference track on January 7 January 6th, 2016

SITRI and Accelink Announce Cooperative Agreement on Opto-Electronic Communication December 31st, 2015

Chip Technology

Gigantic ultrafast spin currents: Scientists from TU Wien (Vienna) are proposing a new method for creating extremely strong spin currents. They are essential for spintronics, a technology that could replace today's electronics May 25th, 2016

Diamonds closer to becoming ideal semiconductors: Researchers find new method for doping single crystals of diamond May 25th, 2016

Dartmouth team creates new method to control quantum systems May 24th, 2016

Attosecond physics: A switch for light-wave electronics May 24th, 2016

Nanotubes/Buckyballs/Fullerenes

Programmable materials find strength in molecular repetition May 23rd, 2016

Nanotubes are beacons in cancer-imaging technique: Rice University researchers use spectral triangulation to pinpoint location of tumors May 21st, 2016

Unveiling the electron's motion in a carbon nanocoil: Development of a precise resistivity measurement system for quasi-one-dimensional nanomaterials using a focused ion beam May 16th, 2016

New research shows how silver could be the key to gold-standard flexible gadgets: Silver nanowires are an ideal material for current and future flexible touch-screen technologies May 13th, 2016

Sensors

Dartmouth team creates new method to control quantum systems May 24th, 2016

Electronic device detects molecules linked to cancer, Alzheimer's and Parkinson's: An inexpensive portable biosensor has been developed by researchers at Brazil's National Nanotechnology Laboratory with FAPESP's support May 20th, 2016

Making organs transparent to improve nanomedicine (video) May 13th, 2016

Scientists take a major leap toward a 'perfect' quantum metamaterial: Berkeley Lab, UC Berkeley researchers lead study that uses trapped atoms in an artificial crystal of light May 13th, 2016

Nanoelectronics

Researchers demonstrate size quantization of Dirac fermions in graphene: Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices May 20th, 2016

Graphene: A quantum of current - When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene May 20th, 2016

New type of graphene-based transistor will increase the clock speed of processors: Scientists have developed a new type of graphene-based transistor and using modeling they have demonstrated that it has ultralow power consumption compared with other similar transistor devices May 19th, 2016

Self-healing, flexible electronic material restores functions after many breaks May 17th, 2016

Announcements

Revealing the nature of magnetic interactions in manganese oxide: New technique for probing local magnetic interactions confirms 'superexchange' model that explains how the material gets its long-range magnetic order May 25th, 2016

Gigantic ultrafast spin currents: Scientists from TU Wien (Vienna) are proposing a new method for creating extremely strong spin currents. They are essential for spintronics, a technology that could replace today's electronics May 25th, 2016

Diamonds closer to becoming ideal semiconductors: Researchers find new method for doping single crystals of diamond May 25th, 2016

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

Energy

Gigantic ultrafast spin currents: Scientists from TU Wien (Vienna) are proposing a new method for creating extremely strong spin currents. They are essential for spintronics, a technology that could replace today's electronics May 25th, 2016

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

Technique improves the efficacy of fuel cells: Research demonstrates a new phase transition from metal to ionic conductor May 18th, 2016

This 'nanocavity' may improve ultrathin solar panels, video cameras and more May 16th, 2016

Alliances/Trade associations/Partnerships/Distributorships

The CEA Announces Expanded Collaboration with Intel to Advance Cutting-edge Research and Innovation in Key Digital Areas May 17th, 2016

Solliance realizes first up-scaled Perovskite based PV modules with 10% efficiency: Holst Centre, imec and ECN pave the road to upscaling Perovskite PV modules May 10th, 2016

Industrial Nanotech, Inc. Expands Distribution Network in US and Internationally May 9th, 2016

Albertan Science Lab Opens in India May 7th, 2016

Solar/Photovoltaic

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

This 'nanocavity' may improve ultrathin solar panels, video cameras and more May 16th, 2016

New research shows how silver could be the key to gold-standard flexible gadgets: Silver nanowires are an ideal material for current and future flexible touch-screen technologies May 13th, 2016

Solliance realizes first up-scaled Perovskite based PV modules with 10% efficiency: Holst Centre, imec and ECN pave the road to upscaling Perovskite PV modules May 10th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic