Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Researchers demonstrate 'avalanche effect' in solar cells

Abstract:
Researchers at TU Delft and the FOM Foundation for Fundamental Research on Matter have found irrefutable proof that the so-called avalanche effect by electrons occurs in specific, very small semiconducting crystals. This physical effect could pave the way for cheap, high-output solar cells. The findings are to be published in scientific journal Nano Letters this week.

Researchers demonstrate 'avalanche effect' in solar cells

Netherlands | Posted on May 26th, 2008

Nanochrystals
Solar cells provide great opportunities for future large-scale electricity generation. However, there are currently significant limitations, such as the relatively low output of most solar cells (typically fifteen percent) and high manufacturing costs.

One possible improvement could derive from a new type of solar cell made of semiconducting nanocrystals (crystals with dimensions in the nanometre size range). In conventional solar cells, one photon (light particle) can release precisely one electron. The creation of these free electrons ensures that the solar cell works and can provide power. The more electrons released, the higher the output of the solar cell.

Avalanche effect
In some semiconducting nanocrystals, however, one photon can release two or three electrons, hence the term avalanche effect. This could theoretically lead to a maximum output of 44 percent in a solar cell comprising the correct semiconducting nanocrystals. Moreover, these solar cells can be manufactured relatively cheaply.

The avalanche effect was first measured by researchers at the Los Alamos National Laboratories in 2004. Since then, the scientific world has raised doubts about the value of these measurements. Does the avalanche effect really exist or not?

Ultra-fast laser method
Within the Joint Solar Programme TU Delft's Prof. Laurens Siebbeles has now demonstrated that the avalanche effect does indeed occur in lead selenide (PbSe) nanocrystals. It has been established, however, that the effect in this material is smaller than previously assumed. Siebbeles' results are more reliable than those of other scientists thanks to more careful and more detailed measurement using ultra-fast laser methods.

Siebbeles believes that this research paves the way for further unravelling the secrets of the avalanche effect.

The Joint Solar Programme is one of the Industrial Partnership Programmes of the FOM Foundation for Fundamental Research on Matter in cooperation with Shell and the NWO (Netherlands Organisation for Scientific Research) division of Chemical Sciences.

####

For more information, please click here

Contacts:
Prof. Laurens Siebbeles
Optoelectronic Materials research group
DelftChemTech
Tel: +31 (0)15 278 1800


TU Delft Science Information Officer
Ineke Boneschansker
Tel: +31 (0)15 278 8499

Copyright © TU Delft

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Manchester scientists tie the tightest knot ever achieved January 13th, 2017

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

Discoveries

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Manchester scientists tie the tightest knot ever achieved January 13th, 2017

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

Announcements

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Manchester scientists tie the tightest knot ever achieved January 13th, 2017

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

Energy

Stability challenge in perovskite solar cell technology: New research reveals intrinsic instability issues of iodine-containing perovskite solar cells December 26th, 2016

Nanoscale 'conversations' create complex, multi-layered structures: New technique leverages controlled interactions across surfaces to create self-assembled materials with unprecedented complexity December 22nd, 2016

Safe and inexpensive hydrogen production as a future energy source: Osaka University researchers develop efficient 'green' hydrogen production system that operates at room temperature in air December 21st, 2016

Going green with nanotechnology December 21st, 2016

Solar/Photovoltaic

Stability challenge in perovskite solar cell technology: New research reveals intrinsic instability issues of iodine-containing perovskite solar cells December 26th, 2016

Going green with nanotechnology December 21st, 2016

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Throwing new light on printed organic solar cells December 1st, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project