Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Researchers demonstrate 'avalanche effect' in solar cells

Abstract:
Researchers at TU Delft and the FOM Foundation for Fundamental Research on Matter have found irrefutable proof that the so-called avalanche effect by electrons occurs in specific, very small semiconducting crystals. This physical effect could pave the way for cheap, high-output solar cells. The findings are to be published in scientific journal Nano Letters this week.

Researchers demonstrate 'avalanche effect' in solar cells

Netherlands | Posted on May 26th, 2008

Nanochrystals
Solar cells provide great opportunities for future large-scale electricity generation. However, there are currently significant limitations, such as the relatively low output of most solar cells (typically fifteen percent) and high manufacturing costs.

One possible improvement could derive from a new type of solar cell made of semiconducting nanocrystals (crystals with dimensions in the nanometre size range). In conventional solar cells, one photon (light particle) can release precisely one electron. The creation of these free electrons ensures that the solar cell works and can provide power. The more electrons released, the higher the output of the solar cell.

Avalanche effect
In some semiconducting nanocrystals, however, one photon can release two or three electrons, hence the term avalanche effect. This could theoretically lead to a maximum output of 44 percent in a solar cell comprising the correct semiconducting nanocrystals. Moreover, these solar cells can be manufactured relatively cheaply.

The avalanche effect was first measured by researchers at the Los Alamos National Laboratories in 2004. Since then, the scientific world has raised doubts about the value of these measurements. Does the avalanche effect really exist or not?

Ultra-fast laser method
Within the Joint Solar Programme TU Delft's Prof. Laurens Siebbeles has now demonstrated that the avalanche effect does indeed occur in lead selenide (PbSe) nanocrystals. It has been established, however, that the effect in this material is smaller than previously assumed. Siebbeles' results are more reliable than those of other scientists thanks to more careful and more detailed measurement using ultra-fast laser methods.

Siebbeles believes that this research paves the way for further unravelling the secrets of the avalanche effect.

The Joint Solar Programme is one of the Industrial Partnership Programmes of the FOM Foundation for Fundamental Research on Matter in cooperation with Shell and the NWO (Netherlands Organisation for Scientific Research) division of Chemical Sciences.

####

For more information, please click here

Contacts:
Prof. Laurens Siebbeles
Optoelectronic Materials research group
DelftChemTech
Tel: +31 (0)15 278 1800


TU Delft Science Information Officer
Ineke Boneschansker
Tel: +31 (0)15 278 8499

Copyright © TU Delft

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New chip architecture may provide foundation for quantum computer: Researchers at the Georgia Tech Research Institute have developed a microfabricated ion trap architecture that holds promise for increasing the density of qubits in future quantum computers May 5th, 2015

'Microcombing' creates stronger, more conductive carbon nanotube films May 5th, 2015

Testing Facility for Graphene Enhanced Composite Pipes May 5th, 2015

Arrowhead Completes Dosing Healthy Volunteers and Initiates Transition to Patients in Phase 1 Study of ARC-AAT May 5th, 2015

Discoveries

New chip architecture may provide foundation for quantum computer: Researchers at the Georgia Tech Research Institute have developed a microfabricated ion trap architecture that holds promise for increasing the density of qubits in future quantum computers May 5th, 2015

'Microcombing' creates stronger, more conductive carbon nanotube films May 5th, 2015

Iranian Scientists Present Model to Study Mechanical Vibrations of Structures Containing Nanocomposites May 5th, 2015

From brittle to plastic in 1 breath: Rice University theorists show environments can alter 2-D materials' basic properties May 4th, 2015

Announcements

'Microcombing' creates stronger, more conductive carbon nanotube films May 5th, 2015

Testing Facility for Graphene Enhanced Composite Pipes May 5th, 2015

Arrowhead Completes Dosing Healthy Volunteers and Initiates Transition to Patients in Phase 1 Study of ARC-AAT May 5th, 2015

Silicon Storage Technology and GLOBALFOUNDRIES Announce Qualification of Automotive Grade 55nm Embedded Flash Memory Technology May 5th, 2015

Energy

Testing Facility for Graphene Enhanced Composite Pipes May 5th, 2015

Engineering a better solar cell: UW research pinpoints defects in popular perovskites May 1st, 2015

Artificial photosynthesis could help make fuels, plastics and medicine April 29th, 2015

Unique microscopic images provide new insights into ionic liquids April 28th, 2015

Solar/Photovoltaic

Engineering a better solar cell: UW research pinpoints defects in popular perovskites May 1st, 2015

Artificial photosynthesis could help make fuels, plastics and medicine April 29th, 2015

Unique microscopic images provide new insights into ionic liquids April 28th, 2015

Pseudoparticles travel through photoactive material: KIT scientists measure important process in the conversion of light energy -- publication in Nature Communications April 24th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project